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Abstract 

The recognition of teams as complex dynamic systems was a hallmark and among the earliest 

considerations of research on team functioning. However, the popularization of conceptual 

heuristics such as the input-process-outcome (IPO) framework and the accessibility of 

methodological, analytical, and meta-theoretical principles from multilevel theory (MLT) have 

resulted in a disconnect between contemporary theory and empirical research on teams and this 

foundational perspective. Thus, the primary motivation for the present paper is to facilitate and 

stimulate future research on team phenomena that embraces systems thinking. To do so, we 

describe key concepts, terminology, and ideas from specific branches of the systems sciences—

namely open systems theory, dynamical systems, and agent-based systems—that have direct 

relevance for researching team phenomena as complex systems. Additionally, a comparison 

between two example models of team performance that are rooted in an IPO+MLT versus a 

systems-oriented perspective is offered to highlight the difference in foci, applications, and 

inferences these approaches offer. The paper concludes with a summary of key advantages as 

well as potential obstacles for reintroducing systems-thinking back into team science. 
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 As the nature of work has continued progressing towards more complex tasks and 

operational environments, teams have increasingly become the primary unit of work for 

organizations (Bersin et al., 2017; Mathieu et al., 2019). Teams are also relied upon to carry out 

many of society’s most vital functions, such as performing medical procedures, conducting 

humanitarian operations, and advancing scientific breakthroughs (Kozlowksi & Ilgen, 2006). 

Understanding how to support, maintain, and facilitate high performing teams thus represents an 

area of critical importance. In recognition of this significance, the past 40 years of organizational 

science has witnessed an exponential increase in the amount of published research on work team 

functioning (Mathieu et al., 2017). 

 In taking stock of the progress that has been made in our understanding of teams and 

team performance over this time span, it is informative to consider how the organizational 

sciences have tended to conceptualize teams and their functioning. For example, several 

taxonomies for classifying team properties have been proposed, such as characteristics of groups 

versus teams (e.g., membership, boundary permeability, entitativity; Forsysth, 2019), the types of 

actions teams engage in to facilitate taskwork (e.g., transition, action, and interpersonal 

processes, Marks et al., 2001), and differences in the context and nature of work performed by 

teams (e.g., action teams, decision-making teams; McGrath, 1984; Sundstrom et al., 1990). 

Beyond these classification schemes though, one of the earliest and foundational 

characterizations of teams is the recognition that they operate as complex dynamic systems 

(Allport, 1924; Lewin, 1943; Parsons, 1937; Sherif et al., 1955). That is, teams are collections of 

unique yet interdependent individuals who engage in behaviors and interactions with one another 

and a commonly experienced environment to satisfy personal goals and collectively recognized 

demands. Through these exchanges, unique social structures (e.g., norms, roles, cultures), 



SYSTEMS SCIENCE FOR TEAM PHENOMENA 4 

affective and cognitive perceptions (e.g., trust, knowledge, cohesion), and patterns of behavior 

can manifest that both describe and shape how teams and their members function and perform 

(Arrow et al., 2000; Cronin et al., 2011; Katz & Kahn, 1978; Kozlowski & Klein, 2000; 

McGrath, 1991; Weick, 1979). 

 Given the historical precedent and widely acknowledged view of teams as complex 

systems, it is surprising that so little conceptual and empirical work has accumulated on teams in 

the social and organizational sciences that corresponds with this foundational perspective. A 

recurrent theme in contemporary reviews of the literature is that the modal theories, methods, 

and empirics directed towards teams treats them as static, holistic, and often anthropomorphized 

entities (e.g., teams “possess” personality, cognitive ability, trust, etc.; Crawford & LePine, 

2013; Cronin et al., 2011; Kozlowski et al., 2013; Humphrey & Aime, 2014; Mathieu et al., 

2019; Waller et al., 2016). In other words, teams have most commonly been described in ways 

that reify them as aggregated, homogenized, and undifferentiated “wholes” rather than rich, 

interactive, and dynamic systems. 

 A consequence of viewing “teams as wholes” versus “teams as systems” is that the 

former tends to promote theory, measurement, and analytic techniques that focus almost 

exclusively on the extent to which attributes, perceptions, behaviors, etc. are consensually shared 

among team members and the extent to which that shared content correlates with other similarly 

formulated team-level variables at the population level (e.g., teams with higher shared 

perceptions of team cohesion exhibit stronger correlations with team performance on average; 

Klein et al., 1994; Dansereau et al., 1999; Kozlowski et al., 2013). Besides failing to capture the 

inherent dynamics of the team system, this focus generally neglects examinations of how, why, 

and what teams do to function effectively that could provide actionable guidance for facilitating 
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team performance (McGrath & Tschan, 2007). We do not wish to imply that the past four 

decades of research on teams has been unfruitful or unproductive. On the contrary, the field has 

identified many useful constructs and accumulated valuable knowledge about teams, and we 

suspect that team science will continue to observe incremental improvements in understanding 

under the current paradigm (e.g., Mathieu et al., 2017; Waller et al., 2016). However, we posit 

that there is considerable potential for advancing team science by more purposefully 

incorporating and embracing teams as complex systems. 

 The primary goal of this paper is thus to provide a primer on systems thinking for the 

teams researcher and its utility for advancing theory and research. We first describe several key 

concepts and terminology from the broader domain of systems science and their relevance for 

representing team phenomena. Next, we highlight critical differences in the foci, applications, 

and inferences that can be advanced from adopting a systems approach to team functioning 

relative to those afforded by contemporary approaches by contrasting two example models of 

team performance from both perspectives. We then conclude with a summary of the strengths 

and likely challenges of incorporating the systems-based approach for conceptualizing and 

researching team phenomena. 

Current Paradigm for Studying Teams in the Organizational Sciences 

 Before elaborating on a systems-oriented perspective to teams research, it is useful to 

describe the prevailing paradigm for studying teams in the social and organizational sciences. 

Contemporary theory and research have arguably been shaped most significantly by two seminal 

perspectives: (1) the input-process-outcome (IPO) framework of team functioning (McGrath, 

1964) and its derivatives (e.g., the Input-Mediator-Outcome-Input (IMOI) framework; e.g., Ilgen 
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et al., 2005; Mathieu et al., 2008) and (2) the “meta-theoretical” principles of multilevel theory 

(MLT; e.g., Kozlowski & Klein, 2000).  

 The IPO framework has provided a useful and widely adopted heuristic for discussing 

factors related to team effectiveness. Inputs in the IPO framework refer to the attributes of 

members (e.g., knowledge, skills, abilities, dispositions), the team (e.g., norms, roles), and the 

organization/environment (e.g., resources, time demands) that constitute a team’s operational 

conditions. Processes are generally described as the actions of team members that facilitate task 

accomplishment and produce characteristic patterns of social interaction and structure (e.g., trust, 

climates, cohesion). Lastly, outcomes are the cumulative results of teams’ efforts and most 

commonly refer to performance-related outputs and affective/perceptual reactions (e.g., 

satisfaction, commitment). Although the IPO framework was never intended to reflect a theory 

or model of team functioning (McGrath, 1984), the causal chain it implies—in which a team’s 

inputs impact its processes which impact its outcomes—has shaped how researchers have 

described, studied, analyzed, and drawn inferences about teams for over half a century. 

 In contrast to the IPO framework’s specific focus on team functioning, MLT represents a 

broad collection of philosophies and methodological recommendations for considering 

phenomena involving collective entities (e.g., teams, multi-team systems, organizations). A 

fundamental tenet of MLT is that an organizational system can be characterized as a hierarchy of 

nested levels in which lower-level units (e.g., individuals) reside within higher-level units (e.g., 

teams). Two important consequents of this premise have strongly impacted the study of teams in 

the organizational sciences. First, substantively meaningful constructs can be conceptualized and 

operationalized at different levels of analysis (i.e., commitment represented as either/both an 

individual-level construct and a team-level construct). This proposition has inspired multiple 
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decades of work devoted to developing conceptual frameworks, definitions, measurement 

approaches, and statistical indicators that capture constructs at different levels of analysis (e.g., 

Chan, 1998; Krasikova & LeBreton, 2019). Second, constructs residing at different levels of 

analysis can influence each other. This proposition has encouraged the development of elaborate 

conceptual models spanning multiple organizational levels and which attempt to capture how 

factors at the same and different levels of analysis relate to one another (e.g., individual-level 

attitudes and team-level cohesion simultaneously influence individual-level commitment). 

Efforts to test predictions from these conceptual models have also spurred the development of 

improved statistical models suitable for handling nested data structures (e.g., random coefficient 

modeling, Gonzalez-Roma & Hernandez, 2017; multilevel structural equations modeling, 

Preacher et al., 2010). In short, MLT provided organizational scientists with a valuable paradigm 

and readily understood standards for presenting theory, designing research, and analyzing data 

relevant to teams and their functioning. 

 In conjunction, the IPO framework and principles derived from MLT have engendered an 

approach to describing and modeling teams in a manner consistent with what Macy and Willer 

(2002) describe as “factor thinking.” In factor thinking, efforts to explain and develop an 

understanding of team phenomena are pursued through the identification of consistent 

covariation between two (or more) variables (Bechtel & Richardson, 1993; Smith & Conrey, 

2007). Thus, a factor-thinking researcher who seeks to understand team performance would 

pursue this goal by identifying potential predictor variables (i.e., inputs such as team cognitive 

ability or team cohesion, or processes such as communication or coordination), employing 

approaches for quantifying those variables at the team-level (e.g., using statistical indices to 

determine whether members’ ability scores and ratings of cohesion can be aggregated, creating a 
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score for a team’s overall communication quality), and then examining whether those sets of 

factors reliably and regularly covary with team performance. Both the IPO framework—with its 

emphasis on classifying variables relevant to team functioning as inputs, processes, or outcomes 

and establishing the intervening mediating chain—and MLT—with its emphasis on defining 

aggregate constructs and exploring within- and cross-level relationships—readily equip the 

factor-thinking teams researcher with an accessible and potent toolkit for developing conceptual 

models and conducting empirical research. 

 Although factor thinking affords several strengths for describing and studying teams, an 

“actor thinking” approach represents an alternative perspective less commonly embraced by the 

organizational sciences but which is well suited for representing teams as complex systems 

(Macy & Willer, 2002). In actor thinking, efforts to explain and develop understanding of 

phenomena are pursued through the identification of generative mechanisms that characterize 

how one (or more) ongoing processes unfold and lead to recognizable patterns (Bechtel & 

Richardson, 1993; Smith & Conrey, 2007). Thus, an actor-thinking researcher who seeks to 

understand team performance might pursue this goal by examining how, when, and why 

individual members in a team engage in different activities (e.g., individuals possess multiple 

goals which they seek to accomplish), influence one another (e.g., task demands and individuals’ 

unique goal pursuits create opportunities for interaction over time), and form relationships that 

lead to specific patterns/outcomes relevant to team performance (e.g., team members self-

organize into smaller interconnected subgroups to accomplish taskwork). Through explicating 

and exploring these mechanisms and how they play out over time, the actor-thinking researcher 

seeks to describe how team performance emerges from the things that members do and how 

changes to those processes influence team outcomes, experiences, and trajectories under specific 
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circumstances (Kozlowski et al., 2013). Actor thinking is thus directly aligned with the thesis of 

teams as complex dynamic systems in which collective phenomena (i.e., team performance, 

cohesion, conflict, trust, etc.) are conceived as continually unfolding consequences of the 

interactions within and between elements of a system (i.e., individuals and their actions). 

 We submit that factor thinking is the de facto and modal paradigm through which teams 

are considered in the contemporary organizational sciences. This perspective has been bolstered 

by decades of conceptual, methodological, and statistical work that have ingrained factor 

thinking into the cultural milieu of teams research. To reiterate, factor thinking can and does play 

a valuable role in summarizing basic predictions and aggregate descriptions of teams and their 

performance; it need not be completely abandoned. However, we believe that advancing the state 

of team science on topics such as team performance will require efforts to embrace and explicitly 

study teams in a manner more consistent with actor thinking. One of the challenges in shifting 

the teams research paradigm from factor to actor thinking is that many of the concepts, methods, 

and techniques of the latter are unfamiliar and rooted in the diffuse and disjointed domain of 

systems science (e.g., Epstein, 1999; Gorman et al., 2017; von Bertalanffy, 1972). In the 

following sections, we thus direct attention to key concepts from these areas that we believe are 

valuable for teams researchers interested in adopting a more actor- and systems-oriented view of 

team functioning. 

Systems Concepts for the Team Scientist 

 A system can most generally be described as a collection of independent yet 

interconnected and interacting elements (von Bertalanffy, 1972). Like teams, systems are defined 

with respect to their boundaries that may vary across space (e.g., physical location of members, 

location of team members in a workflow network), time (e.g., changes in membership or 
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responsibilities), and purpose (e.g., shifts in team and member goals). Systems are also 

commonly characterized as being embedded within an environment whose conditions (e.g., 

resources, task demands, policies) can influence and be influenced by the actions/outputs of the 

system and its elements. Given the breadth of applications and the interdisciplinary nature of 

systems science in general, several different philosophies, models, and methodological 

conventions exist for discussing and studying systems (social or otherwise). Although these 

varying perspectives share the common goal of characterizing systems as defined above, they 

often draw attention to and emphasize different aspects of system functioning in their 

interpretations and explanations. For purposes of the present discussion, we limit our focus to 

three branches of systems that are particularly relevant for advancing more systems-oriented 

treatments of team phenomena—open systems, dynamical systems, and agent-based systems. 

Open Systems 

 The consideration of teams and organizations as open systems is among the earliest and 

most widely recognized systems perspectives in the social and organizational sciences (e.g., Katz 

& Kahn, 1978; Kozlowski & Klein, 2000; Parsons, 1937; Mathieu et al., 2008; von Bertalanffy, 

1972). An open system is one in which material and energy can enter and leave through 

exchanges between the system and its environment (von Bertalanffy, 1950). For example, teams 

use their available equipment, information, and the capabilities of members (i.e., materials) to 

make products, services, and decisions that are subsequently distributed both within and outside 

the team to secure new resources. Further, teams transform these materials by continually 

drawing from and maintaining the affective/motivational, cognitive, and behavioral efforts of 

members (i.e., energy). Open systems are commonly contrasted against closed systems in which 

there is no net change in material or energy with the surrounding environment. By way of 
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metaphor, an insulated and vacuum-sealed water bottle is a closed system as it is designed to 

keep its contents at the same level and temperature by preventing energy (e.g., heat) and material 

(e.g., water) from escaping or entering. In contrast, a cup with no lid is an open system as it is 

completely exposed to the environment and its contents can be influenced by the surroundings 

(e.g., water molecules can evaporate into the air, new substances can fall into the cup, heat is 

exchanged between the cup’s contents and the surrounding air/surfaces). In this sense, a closed 

system is construed as completely isolated from its environment, whereas an open system is 

separate from yet in constant exchange with its environment.  

 In nature—and social systems in particular—there are few perfectly closed systems. 

Consequently, the significance of recognizing and treating teams as open systems is important 

for at least two reasons. First, the open systems view of teams emphasizes the critical importance 

of integrating a team’s environment into explanatory accounts. There are numerous facets and 

ways in which a team’s environment can be conceptualized (e.g., Ostroff, 2019, Meyer et al., 

2019), including the physical environment, the task environment, and the sociocultural 

environment. Each of these embedding contexts reflects unique environmental facets with which 

teams and their members exchange material and energy. Environments also contain resources 

and demands that can facilitate or constrain (respectively) team functioning by placing 

differential value on certain member attributes, actions, and their distribution within a team 

(Guzzo & Shea, 1992; Mathieu et al., 2008). For example, the presence of stormy weather versus 

clear skies affects the criticality of attention, alertness, and communication among members in 

an air traffic control team to effectively carrying out it tasks. 

 Second, an implied condition of all open systems is that they are in “perpetual motion;” 

that is, they engage in near continuous exchanges of material and energy with their environment. 
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Notably, this is true even in situations where an open system is said to be “at rest” or 

equilibrium. Consider again the example of the sealed bottle versus the open cup. It is possible 

for both systems to achieve an equilibrium temperature wherein the heat of their contents does 

not change. However, the way in which these equilibria are reached and how they react to 

subsequent exchanges differs. In the closed system of the sealed bottle, an equilibrium 

temperature is attained once the heat contained in the air and liquid molecules trapped in the 

container has been equally distributed. Furthermore, this temperature will remain constant once 

reached unless new material/energy is added or removed from this system, at which point a 

qualitatively new equilibrium point should emerge (e.g., adding hot water to the bottle will raise 

the internal temperature of the contents to a new stable level). In contrast, the constant exchange 

between the open cup and its surrounding environment means that one would need to near 

continuously heat the contents of the cup to maintain its temperature at a given level. An open 

system can only maintain an equilibrium by continuing to import new material or energy from 

the environment. One can thus think of teams and their members as needing to continually 

generate effort—which necessitates a steady supply of support in the form of materials 

(equipment, information, etc.) and energy (motivational sources, capabilities, etc.)—to maintain 

a steady level of functioning (Katz & Kanh, 1978; von Bertalanffy, 1972). 

 An open system that has achieved this degree of homeostasis (i.e., rate of material/energy 

entering equals the rate at which material/energy is leaving) is said to be in a stable or steady 

state (von Bertalanffy, 1950). An important takeaway from the recognition of steady states in an 

open system is that, unlike in closed systems, it can be difficult to infer whether changes to the 

material/energy of an open system produce a demonstrable change if only the system’s outcomes 

are observed. For example, adding heat to the open cup may not raise the internal temperature of 
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its contents if the rate at which heat dissipates from the cup also simultaneously increases. 

However, such changes should be evident in how the system is operating over time. Extending 

this insight to teams, changing the resources, capabilities, efforts, composition, etc. of a team 

may or may not influence its observable performance if the interactions, roles, behaviors, 

exchanges, etc. carried out by members adapt accordingly. Such equifinality (i.e., potential for 

any single state/outcome in a system to be achieved through different initial conditions and 

different processes) is common in open systems and yet another reason why focusing on how 

and what teams do (i.e., actor thinking) is critical for understanding team phenomena. 

Dynamical Systems 

 In many respects, dynamical systems theory attempts to provide an overarching 

methodology, set of tools, and analytical frameworks for representing the behavior of open 

systems theory (cf., Thelen & Smith, 1994). Although some in the organizational sciences have 

equated the application of dynamical systems theory to teams with analyzing the trajectory of 

team-level constructs over time (e.g., autoregressive/dual change score models of team cohesion; 

Cronin et al., 2011; Matusik et al., 2019), the foundations of dynamical systems theory are 

broader and encompass efforts to capture global system features/patterns and their implications 

for understanding local occurrences. In the context of dynamical systems theory, local and global 

refer to whether the primary explanatory lens for a phenomenon is oriented towards a system’s 

elements or the system itself, respectively (Gorman et al., 2017). For example, a local account 

for team cognition might focus on the extent to which similarity and overlap among the content 

of individual members’ knowledge exists and the individual-level processes involved in 

producing convergence of those outcomes (e.g., how individuals’ attention, memory, and 

information interpretation processes operate; Grand et al., 2016; Dionne et al., 2010). In contrast, 



SYSTEMS SCIENCE FOR TEAM PHENOMENA 14 

a global account of team cognition might focus on identifying sequences of behavior that occur 

while teams interact and the extent to which those sequences represent generalizable, stable, and 

predictable patterns indicative of how teams learn (e.g., identifying and categorizing sequences 

of communication as indicative of different team learning functions; Cooke et al., 2013; Gorman, 

et al., 2009; Kennedy & McComb, 2014). This latter example is consistent with the dynamical 

systems approach to understanding team behavior as it seeks to describe and quantify a more 

“macro” system-level pattern of behavior rather than elaborate the more “micro” 

actions/processes carried out by specific individuals within that system. 

 A common technique for representing and summarizing the sorts of change dynamics 

represented in the dynamical systems perspective is through feedback loops (or multiple 

interlocking feedback loops). A feedback loop describes a recursive relationship among system 

variables in which it is possible for a variable to influence itself over time either directly or 

indirectly through its effect on other intervening variables (Sterman, 2000). A notable 

implication of representing a system’s dynamics through feedback loops is that distinctions 

between inputs and outputs become blurred. The circular influence structure inherent in a 

feedback loop means that any factor, process, or event involved in the cycle can be 

conceptualized as both an input and an output depending on when it is considered in the 

sequence of events (Cronin et al., 2011).  

 For example, Mathieu et al. (2015) describe an empirical study in which they examined 

the reciprocal relationship between team cohesion and team performance over time. In their data, 

team cohesion served as an input to performance at time t, but an output impacted by team 

performance at time t+1. The authors observed that increases in team cohesion were associated 

with increases in team performance, which were subsequently related to increases in team 
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cohesion. This form of recursion exemplifies a positive or self-reinforcing feedback loop in 

which a reciprocal positive relationship exists between two variables in a system (e.g., higher 

cohesion at time t → higher performance at time t+1; higher performance at time t+1 → higher 

cohesion at time t+2). Positive feedback loops have the potential to compound over time and 

thus produce explosive patterns of exponential growth or collapse. Alternatively, a negative or 

self-limiting feedback loop is one in which changes in one variable restrict or attenuate changes 

in another variable over time. For example, DeShon et al. (2004) suggest that individuals 

working in teams regulate their efforts around accomplishing both individual- (i.e., “I need to 

type up my daily report”) and team-level (i.e., “Our team needs to deliver the final product by the 

deadline”) goals. However, in cases where these goals conflict or cannot be accomplished 

simultaneously, directing efforts towards one goal comes at the cost of effort and achievement 

relevant to the other goal that must be corrected through future actions (e.g., higher effort 

towards individual goal at time t → lower performance on team goal at time t+1; lower 

performance on team goal at time t+1 → reduced effort towards individual goal at time t+2). 

Negative feedback loops result in asymptotic patterns in which changes in the implicated system 

variables eventually reach an equilibrium. Assuming unlimited time and resources, the feedback 

loops described by DeShon et al. (2004) would (eventually) result in team members exerting 

effort towards individual and team goals such that the effort directed towards and performance 

accumulated on each goal would proceed at rates equivalent to their respective desired level of 

achievement. 

 Of note, it is only possible for the sorts of change dynamics depicted above to occur if 

certain concepts/factors in a system are dynamic variables (sometimes referred to as stocks, 

Sterman, 2000). A dynamic variable is one that can maintain its state over time and thus operates 
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as though it has a “memory” of its current state when changing over time (Vancouver & 

Weinhardt, 2012; Weinhardt & Vancouver, 2012). From this perspective, team cohesion would 

be considered a dynamic variable as it likely does not exist only at a single time point; it is 

presumed to exist over and through time such that its level can accumulate or dissipate from 

moment-to-moment as team members interact or events unfold. The recognition that certain 

variables/constructs persist and ebb-and-flow in a near continuous fashion is critical to the 

conceptualization of teams as complex dynamic systems. 

 The example feedback loops presented above were relatively simple and involved only 

two reciprocally related variables. However, a feedback loop may be comprised of several 

intervening elements. For example, Rudolph and Repenning (2002) offer a dynamical systems 

representation for how “performance disasters” might occur in teams (i.e., team becomes so 

overwhelmed with tasks that it effectively collapses). In their theory, the number of tasks a team 

must complete is represented as a dynamic variable such that tasks can continuously accumulate 

over time and are resolved at a rate equal to the team’s capabilities. The authors propose that 

when faced with a quota of tasks, teams formulate a perception for how quickly those demands 

can be resolved (number of tasks remaining → perceived resolution rate). This perceived 

resolution rate subsequently contributes to a team’s stress level (perceived resolution → stress), 

conceptualized as the ratio of a team’s perceived resolution rate to its typical resolution rate (e.g., 

perceiving that more needs to be done than can typically be accomplished increases stress). 

Lastly, stress is proposed to exhibit a non-linear relationship with how many tasks a team 

resolves in a given time period such that increased stress improves performance up to a point 

after which it results in increasingly worse performance (stress → number of tasks remaining). 
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 This (moderately) more complex feedback loop highlights some additional points of 

interest with respect to representing team phenomena from the perspective of dynamical systems. 

First, the passage of time is an essential and explicit feature of dynamical systems theories as it 

permits the transmission of influence among variables/concepts within a feedback loop(s). 

However, this transmission process need not occur instantaneously and therefore provides a 

unique way in which substantive concepts or environmental conditions can be incorporated into 

the representation of team dynamics. For example, including a delay between the arrival of new 

tasks and when a team becomes aware of those tasks in Rudolph and Repenning’s (2002) theory 

could be used to represent the effect of team situational awareness or the transparency of 

environmental task demands. Second, dynamical systems representations can incorporate 

multiple interlocking feedback loops that permit a researcher to explore the combinatorial and 

opponent processes that commonly exist within real team systems. Although not immediately 

obvious, Rudolph and Repenning’s (2002) theory is comprised of two interlocking feedback 

loops: (1) a negative/self-limiting feedback loop for when the effects of stress on performance 

are beneficial (i.e., increased stress → better performance rate → ability to keep up with 

accumulating tasks) and (2) a positive/self-reinforcing feedback loop for when the effects of 

stress performance are harmful (i.e., increased stress → poorer performance rate → inability to 

keep up with accumulating tasks). Lastly, the existence of different and/or different combinations 

of feedback loops allows researchers to represent and examine the conditions that may give rise 

to several characteristic types of dynamic patterns. Most notably, dynamical systems theory is 

particularly well-suited for representing tipping points and periodic/oscillating patterns of system 

behavior. 
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 Two final concepts gleaned from the dynamical systems perspective that have proven 

useful for characterizing team dynamics are attractors and perturbations. An attractor represents 

a “state of being” towards which a system evolves over time (Gorman et al., 2017; Nowak et al., 

2005). Although there are formal methods for mathematically representing attractors and the 

“push-pull” they exert on systems, an intuitive characterization of an attractor is that it reflects a 

point at which a system has converged on a predictable and repeated set of actions, behaviors, 

and processes given its current conditions. Consistent with the previously discussed notion of 

steady states, a system and its elements within the domain of influence of an attractor are not 

necessarily inert. Rather, it means that the sequence of behaviors and interactions within and 

among system elements and the strength and pattern of cyclical relations among a system’s 

variables have stabilized, such as when a team has settled into a predictable routine for how its 

members engage in problem-solving and exchange information. 

 However, this seemingly stable system behavior may change if conditions change. A 

perturbation represents a “shock” or external disturbance to a system. If sufficiently disruptive, a 

perturbation may knock a system away from its current attractor state, forcing it to reorganize to 

enter its previous attractor again or potentially sending it towards a new attractor. Thus, if a 

change in team membership occurs in which several members turnover and are replaced by new 

members, the previous sequence of interactions which characterized a team’s communication 

patterns may change (either suddenly or incrementally) as members establish new preferences 

and expectations for how to interact. Over time, the team may settle back into the 

communication structure it used prior to the perturbation or it may transition into an entirely new 

way of communicating and interacting. Consequently, scientists that apply dynamical systems 

theories to team phenomena often study and purposefully leverage perturbations in a team’s 
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environment to identify potential attractors that may exist in a team system and the extent to 

which teams that reside in different attractors function effectively. 

Agent-based Systems 

 In contrast to the dynamical systems perspectives, the agent-based system perspective 

focuses on explicating how local interactions among specific entities within a collective give rise 

to more global distributions, patterns, and trajectories produced by a system (Bechtel & 

Richardson, 1993; Epstein, 1999; Smith & Conrey, 2007). Nevertheless, many of the same 

concepts (e.g., dynamic variables, feedback loops, perturbations) central to the dynamical 

systems perspective are represented and captured within the agent-based system perspective as 

well. However, the explicit focus of agent-based systems on how local occurrences/events give 

rise to global system properties raises some additional key concepts. 

 The three most fundamental concepts of agent-based system descriptions are agents, 

environments, and rules (Wilensky & Rand, 2015). Agents are the elementary 

components/entities of a system that are capable of acting, reacting, or otherwise behaving (e.g., 

individuals within a team). Agents are described as possessing attributes whose levels may be 

static (e.g., race, sex, personality) or dynamic over time (e.g., perceptions, goals, motivation). In 

theories rooted in agent-based systems, it is common to consider agents as possessing several 

attributes simultaneously and to describe the overall “profile” of attribute levels within an agent 

at any moment in time as the agent’s state. Consequently, inferences about element- and system-

level outcomes from the agent-based perspective often involve interpretations of agent states 

rather than (or in addition to) aggregate correlations among singular attributes/factors (e.g., 

which combination of attributes within and between team members contribute to more rapid 

team cohesion). The initial configuration and subsequent changes in the level and/or distribution 
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of attributes across agents in a system are also typically of interest in agent-based system theories 

and research (Kozlowski et al., 2013). In this sense, agent attributes both establish the initial 

conditions of a system as well as provide a continual and recursive source of influence whose 

effects may change over time. 

 The second fundamental component of agent-based systems, environments, holds a 

similar connotation as depicted by the previous systems perspectives and characterizes the 

context in which agents are embedded and interact. However, explications of phenomena from 

an agent-based system perspective frequently entail efforts to precisely characterize and define 

specific features of an environment and how they constrain and shape the behaviors/interactions 

in which agents can engage. Perhaps the most significant such environmental feature in the 

context of team systems is interdependence. Broadly construed, interdependence describes how 

and/or the extent to which conditions, actors, and/or actions are coupled with (and therefore 

mutually influenced by) other variables, actors, and/or actions in a system (Weick, 1979). For 

example, a team task that exhibits a sequential form of interdependence will strongly dictate the 

order in which the activities and goal-relevant behaviors of individual members are performed 

(e.g., an emergency medical team needs to establish a patient’s airway before directing attention 

to other bodily injuries; Van de Ven et al., 1976). The structure imposed by this workflow 

interdependence can subsequently affect how members’ social relationships, perceptions, and 

expectations form by restricting when, which, and how members interact with one another. 

Relatedly, the environment can also determine how individual contributions to performance are 

combined to constitute collective system performance (e.g., team sales equal the sum of 

individuals’ sales; speed of a rowing team is determined by the slowest member; Steiner, 1972). 
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This form of behavioral interdependence can impact how individuals in a team allocate 

resources, coordinate and organize behaviors, and respond to environmental changes. 

 The final foundational component of agent-based systems are rules. Rules are intended to 

describe the actions, procedures, and/or mechanisms that individual agents and/or environments 

enact in response to specific events or conditions (Wilensky & Rand, 2015). Intuitively, the rules 

specified in an agent-based system elaborate “instructions” that elements of the system “follow” 

when faced with particular stimuli. In team applications, such rules are analogous to team 

processes in that they reflect which, when, and to what end individual members engage in 

behaviors related to task accomplishment (McGrath, 1964, 1984; Marks et al., 2001). The focus 

on explicating rules that characterize why and how a system’s elements behave is unique to the 

agent-based system approach. For example, the description of the positive feedback loop 

between team cohesion and team performance described by Mathieu et al. (2015) conveys how 

these properties are expected to mutually unfold over time. However, this relationship does not 

convey what members in these teams are doing that would cause these variables to be related and 

produce a mutually reciprocal pattern. A set of rules such as “members help those they like” and 

“members like those who perform well” provides one possible generative account for this 

system-level relationship, but there are likely other rules or rule combinations capable of 

producing a positive feedback loop between team cohesion and performance. Thus, a critical 

purpose of explicating rules in an agent-based system is to provide a transparent description of 

the potential generative mechanisms within a system that enables research to explore how 

particular patterns of system behavior can arise and be influenced. 

 Building upon this latter point, an axiom commonly advanced in the broader systems 

science literature is that “the whole (i.e., a system) is often more than the sum of its parts” (e.g., 
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von Bertalanffy, 1972). Although this mantra is referenced in relation to several different aspects 

of system behavior, it most generally reflects that a system and its outcomes usually cannot be 

well understood by only examining its constituent elements in isolation. Instead, understanding 

system phenomena requires understanding how collective outcomes emerge from the unique 

actions, relations, and interdependencies among lower-level entities. Emergence describes the 

process through which novel and coherent properties, structures, and patterns arise within a 

system due to the actions and interactions of the system’s constituent elements (Corning, 2002; 

Goldstein, 1999). Research in the organizational teams literature is replete with examinations of 

emergent constructs/states that reflect discernable “signatures” of stable/emerged behavioral 

routines, perceptions, and relations (e.g., team performance, team cohesion, team efficacy, team 

trust, team climates; Kozlowski & Ilgen, 2006; Marks et al., 2001). However, attempting to 

understand or predict system behavior by focusing only on their emerged properties while 

ignoring the underlying processes of emergence is akin to trying to infer the plot of a movie by 

looking only at a single still frame from the film. Consequently, the agent-based systems 

perspective emphasizes that adequately understanding and impacting emergent system-level 

properties necessitates explicating the agents, environment, and rules of a system. Through 

repeated enactment of rules by agents in an environment, unique system characteristics (e.g., 

team cognition, team norms, team cultures) are created from the “bottom-up.” These emergent 

properties can also subsequently influence behavior and interaction in a more “top-down” 

manner, thus reflecting the reciprocal “micro ↔ macro relationship” commonly attributed to 

complex dynamic systems (Page, 2018). 

Team Phenomena from an IPO+MLT versus Systems-Oriented Perspective 
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 Although the foci of the open systems, dynamical systems, and agent-based systems 

perspectives suggest different implications for how one might pursue research, they collectively 

offer an important foundation upon which to begin developing a more dynamic and actor-

oriented view of teams. In the remainder of the paper, we attempt to directly highlight the unique 

value that this perspective holds for team science by considering how the explication of a 

specific team phenomena—team performance—might be approached from the conventional 

IPO+MLT paradigm versus a more systems-oriented approach. To do so, we present and discuss 

the characteristic features of two models that a researcher might propose to account for team 

performance. One model is consistent with contemporary treatments of team phenomena, 

whereas the other adopts a systems-based perspective.  

 Importantly, the purpose of this discussion is not to develop, articulate, promote, or 

justify the conceptual rationale of either team performance model. Although we have attempted 

to make the example models logical and uncontroversial with respect to the team performance 

literature, the concepts and relations they include are largely irrelevant. Neither representation is 

intended to advance an account of team performance we advocate be tested or developed in 

future research per se. Rather, the goal is to highlight how the foci, considerations, rationale, and 

philosophies underlying the representation of team phenomena (and the accompanying 

methodologies, inferences, and generalizations they afford) differ when approached from the 

IPO+MLT (i.e., factor-thinking) perspective versus a systems-oriented (i.e., actor-thinking) 

perspective. We begin by considering an example model from the more familiar IPO+MLT 

perspective followed by an example model grounded in a systems-oriented perspective. We then 

conclude with a summary of some of the strengths and considerations for integrating systems-

oriented thinking to advancing team science research. 
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Factor-Thinking: An IPO+MLT Team Performance Model  

Model Description 

 Figure 1 presents a visual summary of an example model of team performance that might 

be advanced by a researcher approaching team performance from the IPO+MLT perspective. 

The model depicts a causal/mediating chain of variables that move unidirectionally from input to 

process to outcome. The structural relationships reflected in the model suggest that team-level 

ability and extraversion are expected to be positively associated with team-level task 

coordination and task communication (respectively). In turn, task coordination and task 

communication are expected to share positive relationships with team performance and team 

efficacy. Additionally, the model posits that task complexity moderates the relationship between 

team ability and task coordination such that the impact of team ability on task coordination is 

magnified when task environments are complex. Team cohesion is also proposed to be positively 

related to the level of observed task communication. At the individual level, a single relationship 

is posited that suggests a member’s ability will be positively related to their self-efficacy 

perceptions. Lastly, the model indicates that the team ability, team extraversion, and team 

efficacy variables are aggregate constructs of their individual-level counterparts. 

Characteristic Features 

 The exemplar model in Figure 1 highlights several salient features common to models 

rooted in the IPO+MLT paradigm. First, the model contains multiple constructs specified at 

different levels of analysis (e.g., individual, team, environment). This conceptual structure is 

intended to convey that certain variables reside or are only interpretable at a particular level of 

aggregation within a nested hierarchical system. For example, cohesion is specified as a team-

level construct in Figure 1 because it is a property of and is only meaningful for describing 



SYSTEMS SCIENCE FOR TEAM PHENOMENA 25 

teams. Cohesion thus has no meaning or direct interpretation for describing either individual 

team members or the environment. 

 Second, the arrows connecting different constructs in Figure 1 are generally intended to 

reflect the expectation that the antecedent variable will account for some proportion of observed 

variance in the consequent variable. Thus, the lateral connections from the team-level input 

variables to the team-level process variables in Figure 1 indicate that the observed level/amount 

of the former are presumed to covary with the observed level/amount of the latter (and similarly 

so for the connection between process and outcome variables). In this manner, the structure of 

the IPO framework shares a strong resemblance with the logic of statistical mediation in which 

the goal is to convey which variables are associated with (and presumably cause) variation in 

other constructs. Furthermore, these relationships are commonly conceptualized and described in 

terms of the simple linear direction of the proposed association (e.g., higher team ability leads to 

better team coordination which leads to better team performance; Ilgen et al., 2005; Mathieu et 

al., 2008).  

 In addition to these feedforward causal paths, there are two other noteworthy 

relationships reflected in Figure 1 that draw inspiration from the tenets of MLT (Kozlowski & 

Klein, 2000). The first are top-down/cross-level relationships which involve either the direct or 

moderating effect of a variable situated at a higher-level of analysis on a variable situated at a 

lower level of analysis. In Figure 1 for example, task complexity (a higher-level environmental 

input factor) is shown as moderating the relationship between team ability and coordination (a 

lower-level team input and process variable, respectively). The logic of such top-down 

relationships is that the higher-level factor in some way “creates” or imposes demands, 

conditions, etc. that impact how lower-level units function and thus should account for some 
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proportion of the observed variance in lower-level variables. The second type of relationship 

exemplified in Figure 1 are bottom-up/emergent aggregations. These relationships are also cross-

level in that the variables of interest are positioned at different levels of the hierarchical system; 

however, the causal direction is reversed such that the lower-level variable is proposed to 

compose a higher-level variable. For models rooted in the IPO+MLT paradigm, such bottom-up 

relationships are generally restricted to characterizing how a construct situated at a lower-level 

manifests as a functionally similar construct at a higher level of analysis. For instance, Figure 1 

depicts a causal arrow from extraversion at the individual to the team level to indicate that team 

extraversion is a function of individual members’ extraversion. However, no causal path can 

exist between individual-level extraversion and, say, communication at the team-level to 

represent how a member’s extraversion might influence communication within the team. Of 

note, this restriction is more a statistical limitation of the analytical techniques most commonly 

used to evaluate factor-based models (Preacher et al., 2010) rather than the inability to 

conceptually explicate or empirically document the impact of a lower-level unit on a collective 

system (e.g., Weingart et al., 2010; Kozlowski et al,. 2013)1. This point will be briefly revisited 

in the discussion on systems-oriented models of team phenomena. 

 A final notable feature of IPO+MLT models is that their modeled constructs and 

relationships are typically conceptualized as stable, time-independent, and oriented towards 

inferences between rather than within teams. Consistent with their roots in the factor-thinking 

philosophy (in which the goal is to examine patterns of covariance among variables), IPO+MLT 

models of team phenomena seldom acknowledge or attempt to represent that (a) many variables 

 
1 As an aside, this recognition offers a compelling example of how the analytical/statistical models implemented by 

the factor-thinking/IPO+MLT researcher have strongly influenced the development of theories and models of team 

phenomena. 



SYSTEMS SCIENCE FOR TEAM PHENOMENA 27 

of interest to teams researchers are dynamic, cumulative, and/or emergent (Weingart et al., 2010, 

Weinhardt & Vancouver, 2012; Vancouver & Weinhardt, 2012; Kozlowski et al., 2013) nor (b) 

the relationships proposed to exist on average and between teams may not generalize to the 

dynamic relationships that exist within teams (e.g., Fisher et al., 2018; Molenaar, 2004). With 

respect to the first consideration and as noted previously in the discussion on dynamic variables, 

a variable such as team cohesion is unlikely to be a static or time-independent concept. As an 

aggregate representation of members’ experiences, perceptions, etc., it is more akin to a 

persistent variable that can change over time rather than a static variable whose level is time-

invariant2. Taken from this perspective, the significance of the second highlighted limitation of 

the IPO+MLT paradigm can be better appreciated—observing a team’s “average” cohesion at a 

single time point (or even aggregated over a few time points) provides little to no information 

about how the construct functions or operates within teams.  

 To elaborate this latter point, Figure 2 demonstrates how the correlation between team 

cohesion and communication that is proposed to exist in Figure 1 may differ if conceptualized 

between-team (i.e., measured at a single random time point or averaged over time) versus within-

team (i.e., over time). A researcher considering this relationship from the IPO+MLT perspective 

would typically state that, on average, teams whose members are attracted to one another are 

expected to exhibit more/richer task communication. This is implicitly reflected in the structural 

arrow between cohesion and communication shown in Figure 1 and the nature of this covariation 

is summarized by the larger black-outlined oval in Figure 2. However, a researcher adopting a 

more dynamic perspective might reason that as team members develop familiarity with one 

 
2 To the extent a team’s cohesion was stable or unchanging over time, it would still be most appropriate to 

conceptualize the variable as existing in a steady state such that it is continuously “sustained” by the perceptions of 

individuals’ momentary perceptions. 
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another and their task requirements over time, cohesion may increase while the need for task 

communication decreases. From this perspective, although teams could differ from one another 

on their overall levels of cohesion and communication, the association between these variables 

within-team may be negative over time (e.g., gray-outlined ovals in Figure 2). Note that both 

interpretations can be “empirically correct” in that they could simultaneously exist in observable 

data. However, only the latter within-team consideration acknowledges or provides insight into 

how one would expect these variables actually operate for a given team.  

 In other words, the emphasis on between-team thinking commonly reflected in the 

representation of team phenomena from the IPO+MLT perspective generally fails to consider 

(or, as in the present example, may promote inferences completely opposite to) how variables 

and concepts of interest relate to team functioning. There is, of course, nothing which inherently 

prevents the factor-thinking paradigm from adopting a more longitudinally oriented or within-

team perspective. However, the orientation of this perspective towards explicating expected 

patterns of covariation on average among aggregate variables lends itself more to considering 

between-team inferences that generally eschew (or misunderstand; see Cronin et al., 2009) the 

implications of dynamic variables for drawing causal inferences and advancing generative 

description about how teams operate. 

Summary 

 The example team performance model depicted in Figure 1 provides an illustrative 

demonstration of the basic logic and affordances of conceptualizing team phenomena from the 

IPO+MLT perspective. Owing to its grounding in the philosophy of factor-thinking research 

(Macy & Willer, 2002), the models and accounts generated under this paradigm are generally 

directed towards describing expected patterns of covariance among aggregate team-level 
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variables. In so doing, the IPO+MLT approach to teams research implicitly equates explanatory 

accounts of team phenomena with the extent to which variance in focal team-level outcomes are 

accounted for by other team-level variables (typically assessed at a single time point). An 

important and related consequent of this recognition is that the understanding/knowledge of team 

functioning advanced within this paradigm may only be appropriate for characterizing the 

strength and direction of relationships that exist on average between teams. The rationale for 

why and/or the extent to which relationships among important team factors/variables also hold 

within teams is seldom described or pursued. Lastly, models rooted in the IPO+MLT paradigm 

do not formally explicate or describe the underlying generative mechanisms and dynamics 

proposed to account for, or give rise to, observed between- and within-team patterns of 

covariation. However, this focus is central to the actor- and systems-oriented approach to 

conceptualizing teams to which we now direct attention. 

Actor-Thinking: A Systems-oriented Team Performance Model  

Model Description 

  Figure 3 visualizes an example team performance model consistent with a more systems-

oriented perspective. In contrast to the IPO+MLT model of Figure 1, the directional arrows and 

set of concepts shown in panel A of Figure 3 depict what and how a team member does, chooses, 

and/or produces (i.e., process mechanisms) to carry out performance-relevant actions in service 

of a team’s task. Stated differently, Figure 3A summarizes a “blueprint” or “script” that an 

individual team member is proposed to follow, and which describes what happens as they work 

towards accomplishing team performance goals. Panel B of Figure 3 highlights that each 

member of the team (i.e., the five circles labeled Members A-E) is proposed to act in accordance 

with this same script. The lines connecting members in Figure 3B further characterize the 
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potential for the actions/outputs of one member to impact the actions/outputs of (i.e., exhibit 

interdependence with) of other members as they engage in performance behaviors relevant to 

accomplishing the overall team task3. 

 The core set of generative process mechanisms for the exemplar team performance model 

are depicted in Figure 3A. The model “begins” with a member contrasting its understanding of 

the team’s task goals to be completed against the current state of accomplishment on those goals. 

This action results in the realization/awareness of goal discrepancies indicating which tasks still 

require completion. Next, the individual is posited to choose a task goal on which to focus effort. 

The arrows leading into the task choice mechanism indicate that this decision is a function of 

several considerations: (1) the previously computed task goal discrepancies; (2) the individual’s 

preferences for collaborating with other members; (3) the individual’s understanding of the 

demands required to complete each task goal; and (4) the individual’s overall self-efficacy. Once 

this choice is made, the individual directs behavior towards accomplishing the selected goal. As 

indicated in Figure 3A, the nature of this behavioral expression can be influenced by the task 

choices of other team members (e.g., if both Member A and Member B elect to work on the 

same task, the amount of effort directed towards the task may be altered or a different behavioral 

action performed compared to if only one of these members had chosen to work on the task). 

This behavioral expression subsequently results in the realization of output that can be 

operationally defined with respect to task performance (e.g., progress is made on a client report, 

 
3 Figure 3B presents all members as interconnected and therefore interdependent with one another. However, such a 

fully connected configuration is not required. For example, a team in which members fulfill specific roles may result 

in some members being highly connected with others whereas some members exhibit less interdependence (e.g., 

Humphrey, Morgeson, & Mannor, 2009). Furthermore, the interdependencies among members may be fixed or 

variable, such as when particular tasks require different subsets of members to collaborate at different points in time 

to accomplish. To simplify our discussion of the exemplar model in this section, we do not consider these 

possibilities or their potential generative mechanisms in the text, but simply acknowledge that interdependence 

networks need not be static or uniform across members in a team. 
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a widget is produced). Additionally, this model also posits that the degree to which performance 

output is accrued is affected by the resources available to perform the task as well as the 

attributes of the individual(s) performing the task (e.g., knowledge, skills, abilities).  

 The output of this task-relevant performance event is proposed to feed into three 

subsequent processes for the individual team member. The first involves updating the status of 

the team’s task accomplishments based on the performance outputs generated across all members 

of the team (cf., Figure 3B). The second process depicted in Figure 3A is task learning. This 

process is intended to reflect that an individual may develop expertise or task-specific 

understanding because of their performance efforts that can inform (a) the state of task goals and 

(b) the demands/requirements for completing a given task. Additionally, the acquisition of task 

knowledge is posited to affect an individual’s perceptions of their self-efficacy. Of note, all three 

of these consequents are proposed to influence subsequent task choices. The final process 

depicted in Figure 3A is labeled social learning and is intended to reflect that an individual may 

develop perceptions of affinity towards their team and other team members through their 

performance experiences. These affinities form the basis of an individual’s cohesion perceptions, 

which subsequently impact future preferences for collaboration and potentially future task choice 

decisions. Following these processes, the entire cycle “begins” anew and continues until the 

team’s task goals are completed. 

 Characteristic Features 

 The example team performance model summarized in Figure 3 illustrates several unique 

features of team phenomena conceptualized from a systems-oriented perspective. A first 

characteristic—and perhaps the most striking in comparison with the IPO+MLT models such as 

that shown in Figure 1—is that the systems-oriented perspective focuses on identifying and 



SYSTEMS SCIENCE FOR TEAM PHENOMENA 32 

elaborating core concepts and mechanisms relevant to team phenomena from the perspective of 

the actors and their actions rather than statistical covariation. In this respect, the representation 

shown in Figure 3 may be more aptly described as a model of team “performing” rather than a 

model of team “performance.” Though the model can be used to discuss and/or conceptualize 

what contributes to team performance, its primary purpose is not to convey the antecedents, 

moderators, mediators, etc. of this outcome per se. Rather, the model attempts to explicate how 

and why team performance as a dynamic construct emerges from the behaviors, perceptions, 

decisions, and interactions of individuals in the team. To facilitate such formulations, it is often 

helpful to initially approach the development of an actor-oriented/systems-based models by 

considering how one might “tell the story” about how a phenomenon of interest is proposed to 

unfold. This strategy encourages the teams researcher to begin thinking through questions that 

focus more directly on the critical elements of the team as a system, such as: 

• Who are the relevant actors? What attributes/characteristics do actors possess which are 

important to their affective, behavioral, and cognitive responses? 

• What exists in the actor’s external/operational environment? Which and how do different 

forces, resources, constraints, etc. in the external/operational environment influence 

when, which, and why actors may interact, change, and/or react? 

• How, where, when, and why might actors interact with other actors and their 

environment? What actions are the actors able or likely to do in response? 

• What are the states in which actors and/or environmental properties can exist over time? 

Which of these qualities are dynamic versus static over time and why? 

 Although these questions appear abstract in the absence of any context, their resolution 

typically becomes more tractable as they are applied to a particular team phenomenon. For 
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instance, the example model in Figure 3 and the verbal description of its operation provided 

above were generated by attempting to reason through these questions in relation to a generic 

team performance scenario. In sum, a characteristic feature of models rooted in the systems-

oriented perspective is their attention towards which, how, and why the concepts and 

mechanisms of interest are proposed to emerge and interface with other concepts and 

mechanisms over time, as opposed to only considering the covariation between sets of static, 

aggregate, and “already emerged” collective variables. 

 A second noteworthy characteristic of systems-oriented team models concerns the 

representation of key variables/concepts important to the explanation for the phenomenon. 

Compared to IPO+MLT models, there is generally less consideration of whether to categorize 

variables as input, process, or outcomes or how to ascribe those variables to specific levels of 

analysis. One reason for this is the variables represented in systems-oriented models often span 

or fail to adequately fit neatly into such classifications. For example, Figure 3 suggests that an 

individual’s cohesion perceptions serve as an input to collaboration preferences, exist and 

operate within a social learning process, and are an outcome of an individual’s affinity towards 

their other team members and the team. Furthermore, cohesion perceptions are technically 

situated as an “individual-level” construct in this model because those beliefs are represented as 

residing with the individual/actor that produces them. However, and as alluded to by Figure 3B, 

cohesion could be operationalized as a collective (i.e., team-level) property by aggregating 

members’ cohesion perceptions together if desired. 

 In addition, the variables represented in systems-oriented models often allow for—or in 

some cases necessitate—a broader array of operationalizations that can encourage researchers to 

think about phenomena through new or alternative lenses. The consideration of variables as 
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dynamic, cumulative, and emerging previously discussed as neglected by IPO+MLT models is 

fundamental to actor-thinking/systems-oriented representations (Kozlowski et al., 2013; 

Weinhardt & Vancouver, 2012). Furthermore, the conceptualization of variables as dyadic and/or 

in the context of relational networks is far more common in systems-oriented models. For 

example, Figure 3 suggests that cohesion is a function of both dyadic/relational perceptions 

among members (i.e., members’ affinities towards each other member) as well as more “gestalt” 

and/or aggregate perceptions of the team writ large. Explicitly incorporating both representations 

of cohesion into the same model of team functioning thus encourages future research to consider 

how and why different patterns of affinity could emerge across both operationalizations and the 

manner by which they may uniquely or jointly affect member and team outputs. 

 On a related note, it may seem unusual that the team performance model shown in Figure 

3 does not contain any variable labeled team performance. However, the model has several 

concepts that could be used to conceptualize team performance in unique yet complementary 

ways. For instance, the performance output variable shown in Figure 3 reflects the amount and/or 

quality of output produced by a member for a given task at a given time point. Thus, the total 

performance output generated across all members and tasks at a given time point offers one 

method for operationalizing team performance. A different representation might rely on task goal 

discrepancies as this concept captures which, how many, and how much of a team’s goals remain 

to be accomplished. Using this variable, team performance could be conceptualized as the rate of 

discrepancy reduction within and/or across task goals. Additional ways of conceptualizing team 

performance in Figure 3 could likely be derived. Although the potential to define a single 

construct in multiple ways may seem undesirable from the perspective of parsimonious 

explanation, it acknowledges the reality that many psychological and team-relevant variables are 
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complex constructs that can manifest in different yet informative ways. For example, 

organizational scholars have long discussed the challenges with developing a straightforward and 

generalizable definition of performance, highlighting that it can entail different operational 

definitions (e.g., performance as behavior/action versus outcome/production), foci (task versus 

contextual performance), and time frames (short-term versus long-term; e.g., Sonnentag & Frese, 

2012). The fundamental thrust of the actor-thinking and systems-oriented philosophy to explicate 

how teams function thus recognizes and affords the opportunity to explore the complexities and 

multifaceted nature of the core variables and constructs involved in team phenomena. 

 A final distinguishing feature of systems-oriented models are that they attempt to 

represent team processes as mechanisms rather than variables. For example, task coordination 

and task communication are presented as process variables in the IPO+MLT model shown in 

Figure 1, but would typically be conceptualized as things that a team can do “more/less of” or 

“better/worse at.” In contrast, task choice, task behavior, task learning, and social learning are 

presented as process mechanisms in the systems-oriented model of Figure 3. In a fully articulated 

model (which the example model described in this section is not) these process mechanisms 

would be precisely specified in a manner that describes how, what, and when actions occur. 

 For this reason, many systems-oriented models are constructed using computational 

modeling techniques rather than through narrative description alone. Although a detailed 

explanation of these techniques is beyond the scope of the present paper, a computational model 

is a formal and algorithmic description of how a set of processes are proposed to occur and 

unfold over time (for general and accessible introductions to computational modeling that are 

oriented towards organizational scholars, see Davis et al., 2007, Harrison et al., 2007, Weinhardt 

& Vancouver, 2012, or Vancouver & Weinhardt, 2012). The formalism of a computational 
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model derives from the use of declarative logic (e.g., IF [X ≥ λ], THEN [Y = 1], ELSE [Y = 0]) 

and/or mathematical equations (e.g., 𝑌𝑡 = 1 1 + 𝑒−𝜆∗(𝑋𝑡−𝑋𝑡−1)⁄ ) to convey how the core concepts 

and variables of a system are proposed to change. The algorithmic nature of a computational 

model derives from declaring the order and sequence in which actions/events are proposed to 

unfold over time and/or in response to other actions/events which may occur in the system. 

These elements of a computational model’s specification may be informed by 

conceptual/theoretical reasoning or established through empirical observation. In either case, the 

end goal is to develop a transparent, precise, and descriptive account of how a system is 

proposed to operate. Further, most contemporary computational models are translated into 

computer code and used to conduct simulations and “virtual experiments” that allow one to 

examine how the proposed set of mechanisms operate under different conditions. This enables 

the researcher to identify/verify predicted patterns, evaluate the plausibility of potential system 

outcomes, and design or test “interventions” for influencing system behavior (for examples 

related to team phenomena in the organizational sciences, see Flache & Mäs, 2008, Grand et al., 

2016, or Coen, 2006). Thus, the specification of processes as mechanisms rather than variables in 

systems-oriented models affords the means for team scientists to precisely describe, explore, and 

probe how teams function in ways that can promote practical and actionable recommendations 

for achieving desired team and member outcomes (e.g., McGrath & Tschan, 2007). 

Summary 

 Despite not being a fully developed or articulated model of team performance, Figure 3 

offers a useful stimulus for summarizing the characteristic features and underlying philosophy of 

actor-thinking and the systems-oriented perspective for representing team phenomena. The 

fundamental orientation of accounts generated within this paradigm are directed towards 
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explicating the activities, events, and interactions that occur within a team system as well as how 

these mechanisms unfold over time through individual members and their environment. In so 

doing, the actor-thinking approach promotes conceptualizations and considerations of team 

phenomena that are targeted towards uncovering and defining core concepts and generative 

mechanisms of team phenomena that are capable of and/or responsible for producing the 

emergent patterns, relationships, and properties observed in teams. This focus also permits the 

potential to generate inferences, predictions, and explanations that are relevant to both between- 

and within-team generalizations. Lastly, the development of actor-thinking and more systems-

oriented models are enhanced through formal model building and evaluation techniques (i.e., 

computational modeling and simulation). These tools afford researchers the capacity to probe the 

logic and specification of models, explore multiple and alternative conceptualizations of key 

variables and outcomes, and develop transparent and precise accounts of generative mechanisms. 

Conclusion 

 Teams and their functioning have long been discussed as operating in a manner 

consistent with complex dynamic systems (e.g., Arrow et al., 2000; Allport, 1924; Lewin, 1943; 

Parsons, 1937). However, this conceptualization is seldom reflected in the contemporary theory, 

methodology, and empirical research on teams in the social, organizational, and managerial 

sciences. We contend that one cause of this mismatch is that many of the fundamental tenets, 

ideas, tools, and orientations embodied by systems science are unfamiliar and/or their 

significance greatly undervalued by team scientists (Epstein, 1999; Gorman et al., 2017). The 

goal of this paper was to introduce several key concepts across the diffuse and eclectic domains 

of systems science and demonstrate their application for conceptualizing and researching team 

phenomena. Additionally, key features of models developed within the currently predominant 
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factor-thinking paradigm (which draws heavily from the IPO framework of team functioning, 

McGrath, 1964, and the meta-theoretical and methodological recommendations of MLT, 

Kozlowski & Klein, 2000) and those rooted in an alternative actor-thinking paradigm (which 

draws heavily from the principles of complex, dynamic, and adaptive systems, von Bertalanffy, 

1972) were summarized to highlight the unique differences and foci these approaches hold for 

considering collective phenomena (Macy & Willer, 2002).  

 We contend that the perspective advanced by adopting a more systems-oriented approach 

holds significant promise for advancing the state of team science. Most significantly, this 

approach draws attention towards explicating how teams function, interact, and exert/experience 

influence from their environments by considering what, when, and why team members “do” 

when working within teams (Kozlowski et al., 2013). The identification and specification of 

these generative mechanisms affords team researchers the potential to more precisely explicate 

and directly explore how the dynamic patterns and emergent properties of teams unfold as well 

as how those properties are produced and thus can be impacted (Epstein, 1999).  

 Lest one conclude that the actor-thinking and systems-oriented perspective is a panacea 

for team science, there are some noteworthy challenges and likely obstacles with adopting this 

approach that are worth recognizing. The inherent complexities of considering both the intra-and 

inter-individual dynamics that occur within teams means that more systems-oriented models can 

easily become complicated, cumbersome, and onerous to comprehend if not appropriately 

restricted. Additionally, the temporal scale for many team phenomena is both poorly understood 

and likely to differ across constructs, contexts, and member configurations. Consequently, 

although actor-based and systems-oriented models can be developed and readily used to propose 

potential trends, trajectories, and/or patterns of team outcomes, predicting the actual or required 
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durations for such developments to occur is difficult. Additionally, and as alluded to when 

describing the features of the example model in Figure 3, most representations of team 

functioning rooted in this perspective must be translated into formal quantitative/computational 

models to fully articulate and examine how they operate (e.g., Cronin et al., 2009). We do not 

believe this a limitation of the actor-thinking and system-oriented approach per se; on the 

contrary, the development of more precise, transparent, and rigorous theory would be a boon for 

team science (Cronin et al., 2011; Kozlowski et al., 2013). However, it does entail a skillset (i.e., 

computer modeling/programming, expressing propositional statements in formal logic and 

mathematical equations) for which many social and organizational scientists do not receive 

training. Nevertheless, the potential of embracing a more dynamic and actor-oriented view on 

teams far outweigh these potential obstacles. Through attempting to realign team science with its 

origins in systems thinking, we believe the discipline can be propelled into a vibrant and 

impactful future.
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Figure 1 

Example Team Performance Model Consistent with a Factor-thinking/IPO+MLT Perspective 
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Figure 2 

Demonstration of the Potential for Differences in the Correlation Between Team Cohesion and 

Task Communication When Considered Within- Versus Between-teams 

 

 
 

Note. The larger, black-outlined oval represents a between-team relationship between team 

cohesion and task communication calculated by assessing teams’ data on both variables either at 

a single time point or averaged over time. The smaller, gray-outlined ovals represent the within-

team relationship between team cohesion and task communication observed for several teams 

based on observations of both variables over time. The annotation in the figure indicates that the 

within-team relationships are negative because the relationship between team cohesion and team 

communication decreases from earlier to later measurement periods. 
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Figure 3 

Representation of the Generative Mechanisms (A) and System-level View (B) of Example Team Performance Model Consistent with 

an Actor-thinking/Systems-oriented Perspective 

 

A 

 

B 

 

 

 

Note. In panel A, shaded gray circles reflect process mechanisms, stacked boxes reflect that the construct is represented by a vector of 

values rather a single value, and black circles with a cross reflect where the actions/outputs of a team member can be impacted by the 

actions/outputs of other team members (e.g., the task choice of Member A can impact the task behaviors of Member B). In panel B, 

each member is shown as adhering to the same generative mechanism model depicted in panel A, with the solid lines connecting 

members reflecting the potential for interdependence among the actions/outputs of team members. 

 

 


