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SPECIAL FEATURE TOPIC: RESEARCH DESIGN 

Advancing Multilevel Research Design: Capturing the Dynamics of Emergence 

Abstract 

Quantitative multilevel research has advanced organizational science, but is limited 

because the focus is incomplete. Most research examines top-down, contextual, cross-level 

relationships. Emergent phenomena – those that manifest bottom-up from the psychological 

characteristics, processes, and interactions among individuals – have been largely neglected. 

Emergence is theoretically assumed, examined indirectly, and treated as an inference regarding 

the construct validity of higher level measures. This paper advances more direct, dynamic, and 

temporally sensitive quantitative research methods designed to unpack emergence as a 

process. We argue that direct quantitative approaches, largely represented by computational 

modeling / agent-based simulation, have much to offer with respect to illuminating the 

mechanisms of emergence as a dynamic process. We illustrate how indirect approaches and 

direct approaches can be complementary and, appropriately integrated, have the potential to 

substantially advance theory and research. We conclude with a set of recommendations for 

advancing multilevel research on emergent phenomena in teams and organizations.   
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SPECIAL FEATURE TOPIC: RESEARCH DESIGN 

Advancing Multilevel Research Design: Capturing the Dynamics of Emergence 

The nature of the linkage between lower level entities and higher level collectives in 

concrete (i.e., physical) and abstract (i.e., social) systems has been theorized by philosophers, 

psychologists, and sociologists for over a century (Corning, 2002; Katz & Kahn, 1966; Sawyer, 

2001). Indeed, in an effort to grapple with this complexity, the disciplines that comprise 

organizational science have sliced the system into distinct levels – micro, meso, and macro1 – 

that have been, at least historically, each associated with different disciplines and research 

methods (Roberts, Hulin, & Rousseau, 1978). Yet, there is reasonable consensus across 

disciplines that two fundamental processes span the multiple levels of organizational systems: 

(a) top down, contextual effects whereby higher level phenomena constrain, shape, and 

influence different lower level phenomena (i.e., cross-level effects) and (b) bottom up, 

emergence whereby dynamic interaction processes among lower level entities (i.e., individuals, 

teams, units) – over time – yield phenomena that manifest at higher, collective levels.  

Empirical research designed to study these phenomena can be conducted using 

qualitative or quantitative methods. Arguably, qualitative methods, largely used by sociologists, 

have been at the forefront of efforts to describe the systemic character of social behavior in 

organizations and the “behavior” of these collective entities (e.g., Burns & Stalker, 1961; Emery 

& Trist, 1960). Indeed, until recently, empirical research encompassing the reciprocal complexity 

of contextual and emergent effects was largely limited to qualitative treatments (e.g., Barley, 

1986; Orlikowski, 1992; Orlikowski & Yates, 2002). Quantitative research methods were simply 

not up to the task. That has changed. The development of a multilevel2 paradigm – an 

integration of theoretical principles, research design and measurement, and analytics – for 

investigating systems phenomena in organizations is an important quantitative research 

advance. Early multilevel pioneers recognized the shortcomings of an organizational science 

based on systems conceptualizations that failed to directly study the linkages connecting distinct 

levels of analysis – micro, meso, and macro (House, Rousseau, & Thomas, 1995; Klein, 

Dansereau, & Hall, 1994; Roberts et al., 1978; Rousseau, 1985). Multilevel research has been 

 
1 Micro = individual, meso = group or team, and macro = organization and higher levels. 
2 We use the term “multilevel” in a generic sense, to encompass cross-level and multilevel research. 
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spurred by the development of meta-theoretical principles to guide theory building (Kozlowski & 

Klein, 2000), creation of frameworks to guide multilevel construct conceptualization and 

measurement (Bliese, 2000; Chan, 1998; Chen, Bliese, & Mathieu, 2005; James, 1982; James, 

Demaree, & Wolf, 1984; Kozlowski & Hattrup, 1992; Kozlowski & Klein, 2000; LeBreton & 

Senter, 2008; Morgeson & Hofmann, 1999), and evolution of analytics to enable appropriate 

modeling of multilevel phenomena (Bryk & Raudenbush, 1989, 1992; Burstein, 1980; Hofmann, 

Griffin, & Gavin, 2000; Muthen, 1994). Although all the conceptual, measurement, and analytical 

challenges are not resolved, in a relatively short time span, quantitative multilevel research has 

pushed beyond purely metaphorical treatments of “organizations as systems” (Kozlowski & 

Klein, 2000) to yield empirical knowledge that bridges multiple levels of the organizational 

system together (Mathieu & Chen, 2011). This is an important scientific advance. 

This advance, however, is not fully realized because extant quantitative research is 

primarily focused on only one of the two core processes that cut across system levels; thus, it is 

incomplete. The vast majority of multilevel research is focused on top-down, cross-level effects, 

whereas emergence as a bottom-up process is largely neglected by quantitative investigators 

(Cronin, Weingart, & Todorova, 2011; Kozlowski & Chao, 2012b). There are two primary 

reasons for this state of affairs. First, when emergence is considered in multilevel research, it is 

primarily treated as part of measurement and construct validation for indicators that transcend 

levels (i.e., constructs that are measured at a lower level, but are aggregated to represent a 

higher level). These are, of course, critical concerns. However, this primary focus yields a 

treatment of emergence in terms of theoretical assumptions that are – at best – indirectly 

supported by statistical indicators and conceptual arguments. Emergence as a dynamic process 

is not examined directly in extant quantitative research.  

Second, there are substantial research ambiguities with respect to assessing and 

representing emergent phenomena. How do we study them? For emergent constructs, there are 

conceptually based measurement and construct validation models (Bliese, Chan, & Ployhart, 

2007; Chan, 1998; Chen et al., 2005; Chen, Mathieu, & Bliese, 2004; Kozlowski & Klein, 2000) 

and well accepted “rules of thumb” with associated statistical justifications (e.g., Bliese, 2000; 

James, 1982; James et al., 1984; Kozlowski & Hattrup, 1992; LeBreton & Senter, 2008) to 

support data aggregation from lower-level measurement to higher-level representation. For 

emergence as a substantive phenomenon, however, research guidance is quite limited. 
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Moreover, emergence is complex because it incorporates both process (i.e., dynamic 

interactions among entities) and structure (i.e., over time it manifests as a collective property; a 

construct or “emergent state”). This duality of process and structure is fundamental to social 

psychological and sociological phenomena in organizations (Allport, 1954; Giddens, 1979; Katz 

& Kahn, 1966), but it makes a substantive focus on emergence a difficult fit to the commonly 

used quantitative research designs and methods in organizational science. 

The purpose of this paper is to advance more direct, dynamic, quantitative research 

methods for investigating emergence. Lest our purpose be misinterpreted, it is important to 

highlight some caveats. First, we are not proposing that the approach we advance is the only 

way to study emergence. It is one potentially powerful way, but one among many (e.g., intensive 

longitudinal designs, experience sampling methods could be adapted to study emergent 

phenomena). Indeed, as we will make clear, qualitative researchers have been studying 

emergence directly for decades. We wish to advance direct quantitative research on 

emergence. Second, our intent is not to supplant research that examines cross-level effects; 

such research is fundamental and remains important. Rather, our intent is to supplement it by 

urging quantitative researchers to investigate the other fundamental system process that is 

currently neglected. Third, our encouragement for direct quantitative research on emergence is 

not intended to suggest that attention devoted to assumptions of emergence in measurement 

development is misguided; such attention is essential. Rather, our effort is intended to expand 

the array of quantitative research design tools, push multilevel research in new directions, and 

advance direct investigation of organizations as multilevel, dynamical systems. 

We begin by discussing the nature of emergence. The term has been applied broadly in 

the organizational literature in ways that are not equivalent. Indeed, some uses of the term are 

antithetical (Corning, 2002; Epstein, 1999). Explicit attention to conceptualization is critical. 

Drawing on complexity theory, we define emergence as a dynamic, interactive process and 

specify three core conceptual foci to capture its essential nature: it is multilevel, process 

oriented, and temporal. We then describe research design approaches that address emergent 

phenomena. We broadly characterize these approaches as indirect or direct, implemented by 

qualitative or quantitative research methods. Indirect approaches rely on retrospective 

observations and infer the nature and manifestation of emergence. Direct approaches rely on 

prospective observations that capture the process and manifestation of emergence as it unfolds. 
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Most quantitative research is indirect because it infers emergence, whereas the vast majority of 

extant efforts to investigate emergence directly are qualitative (Kozlowski & Chao, 2012b). 

Qualitative research provides a rich descriptive foundation for theorizing about the process 

mechanisms that undergird emergence. However, quantitative research is needed to advance 

theoretical precision, verification, and extension. Our focus is on advancing quantitative 

research methods for investigating multilevel emergence directly. 

We then illustrate how extending quantitative research to examine emergence directly 

can advance theory and understanding. It is not our intent to be exhaustive; that is beyond the 

scope of a single paper. Rather, our intent is to explicate and illustrate; to provide exemplar 

topics for new research and a research approach that can be exploited to extend and build 

multilevel theory on emergence. We focus on three topic areas of team research – team 

perceptions, group decision making, and team interaction processes – that could and should 

focus on emergence as a process, but do not. Team research, at the meso juncture of micro 

and macro influences, is an ideal focal point for research on emergent phenomena. For each 

topic, we (a) describe the conceptual foundation with respect to emergence, (b) consider 

treatment of the topic in extant research highlighting that emergence is relevant but not directly 

addressed, (c) discuss new research foci that could be advanced if emergence was a focal 

substantive phenomenon, and (d) explicate how a more balanced research approach that 

integrates computational modeling / agent-based simulation with longitudinal research designs 

conducted in the field or laboratory can advance a more direct assessment of emergence and 

can facilitate theory building. We conclude the paper with a discussion that provides a set of 

recommendations to help guide researchers who are interested in implementing and extending 

this integrated multilevel research design. 

Emergence in Organizational Research 

The Nature of Emergence 

Definition. Kozlowski and Klein (2000) define multilevel emergence in organizational 

behavior as a bottom-up process whereby individual characteristics and dynamic social 

interaction yield a higher level property of the group: “A phenomenon is emergent when it 

originates in the cognition, affect, behaviors, or other characteristics of individuals, is amplified 

by their interactions, and manifests as a higher-level, collective phenomenon” (p. 55). Kozlowski 

and Klein (2000) were explicit in connecting their definition to complexity theory 
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conceptualizations of emergence. Also rooted in complexity theory, Crutchfield (1994) noted 

that “Some of the most engaging and perplexing natural phenomena are those in which highly 

structured collective behavior emerges over time from the interaction of simple subsystems” (p. 

516), Axelrod (1997) stated that “The large scale effects of locally interacting agents are called 

‘emergent properties’ of the system” (p. 4), and Epstein (1999) defined emergent phenomena as 

“… stable macroscopic patterns arising from the local interaction of agents” (p. 53). In sociology, 

the “individualist emergentist” perspective (Sawyer, 2001, p. 563) represents a similar 

conceptualization, such that system level behavior is “… an emergent consequence of the 

interdependent actions of the actors who make up the system” (Coleman, 1986, p. 1312).  

The concept of emergence has a long history of usage in philosophy and science. We 

emphasize the complexity theory conceptualization of emergence as a bottom-up process of 

dynamic interaction because it departs from alternative uses of the term “emergence” in the 

literature. According to Corning (2002, pp. 18-19), who cited Blitz (1992) as the source, “… the 

term “emergent” was coined by G. H. Lewes …” circa 1874. The term is used to refer to a 

variety of distinctly different concepts, which – not surprisingly – has sown seeds of confusion. 

One use of the term refers to the mere appearance, growth, or manifestation of a phenomenon. 

Lacking any systems character, this conception is not relevant to multilevel emergence 

(Corning, 2002). Another much more problematic distinction concerns the nature of the linkage 

between micro-and higher levels; an issue of the relation between “wholes” versus “parts” 

(Chalmers, 2006; Corning, 2002; Sawyer, 2001). Referring to this distinction, Sawyer (2001) 

noted that “… sociological uses of emergence are contradictory and unstable; two opposed 

sociological paradigms both invoke the concept of emergence and draw opposed conclusions” 

(p. 552). Indeed, these differing conceptualizations of emergence and the nature of the micro-

macro linkage are an ongoing source of debate in sociology (e.g., Greve, 2012).  

With respect to these differing conceptualizations, General Systems Theory (von 

Bertalanffy, 1968) describes emergent phenomena as holistic, greater than the sum of the parts, 

and irreducible. Similarly, classical emergentism in philosophy views emergent phenomena as 

“unexplainable in principle” by reference to lower level entities (Epstein, 1999, p. 53).3 In 

sociology, collectivist theories view emergent phenomena – though acknowledging their origin in 

 
3 See Epstein (1999) for a concise discussion and refutation of emergentism. 
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individual interaction – as holistic, independent, and non-reducible at the higher level (e.g., Blau, 

1987; Durkheim, 1895). This view is not consistent with our complexity theory conceptualization 

of multilevel emergence. It is also inconsistent with other sociological accounts that assume 

micro origins for the properties of social collectives (e.g., Coleman, 1987; Hayek, 1942; 

Homans, 1958; Mill, 1843; see Sawyer, 2001). From our perspective, the issue is not one of 

reductionism; that is, of deducing the properties of macro phenomena from their micro origins. 

Rather, the issue is to deduce the process mechanisms inherent in micro interaction dynamics 

that yield the higher level phenomenon. As Kozlowski and Klein (2000) expressed it, “We wish 

both to understand the whole and keep an eye on the parts” (p.54). The goal is to understand 

the process of emergence through system dynamics across multiple levels – simultaneously. 

Note that although the Kozlowski and Klein definition focuses on micro and meso levels, 

phenomena can originate at other levels and emerge to one or more higher levels. Ployhart and 

Moliterno (2011), for example, theorize on the emergence of human capital across multiple 

organizational levels and Kozlowski, Chao, and Jensen (2010) theorize about organizational 

learning as a process of emergence across the micro, meso, and macro levels of the system. 

Nonetheless, the meso level suits our focus, as teams sit at the juncture of micro origins and 

more macro contextual constraints; it is an ideal target for the study of emergence (Kozlowski & 

Chao, 2012b). Another point to note is the duality of process and structure in emergence 

highlighted previously. The process of emergence begets structure in the form of an emerged 

phenomenon that then shapes subsequent processes (Allport, 1954; Giddens, 1979; Katz & 

Kahn, 1966). Finally, although it is not explicit in the definition, Kozlowski and Klein (2000) argue 

that a given phenomenon can emerge in different ways or forms; the dynamic process by which 

a phenomenon emerges need not be universal in form. 

Core conceptual foci. Our definition incorporates conceptual foci that are useful to make 

explicit, as they will later be used to establish that typical designs used in quantitative 

organizational research fail to address emergence directly (see Figure 1). First, emergent 

phenomena are multilevel. They encompass at least two different levels of analysis, a lower 

level at which the phenomenon originates (i.e., individual cognition, motivation / affect, and 

behavior) and a higher level at which the collective property manifests. Second, emergent 

phenomena are process oriented. The substantive emphasis is on the process mechanisms that 

drive the dynamic interactions among entities (i.e., individuals) that yield the emerged property. 
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The process mechanisms are the theoretical engine of emergence; thus, they need to be 

specified with precision. Third, emergent phenomena take time to manifest at the higher level. 

Time frames may be very brief or quite lengthy, depending on the phenomenon. Finally, 

although it is not a core characteristic of emergence per se, contextual factors at the higher level 

shape and constrain the process dynamics of emergence. Thus, the context is a critical 

consideration in conceptualizing how emergence may unfold.  

<Insert Figure 1 about here> 

Challenges to studying emergent phenomena. Although it is easy to conceptualize how 

individuals shape group processes and outcomes, conducting research that examines this has 

been problematic in multilevel research (e.g., Griffin, 1997). Indeed, all major treatments of 

multilevel and latent growth modeling (LGM) acknowledge the inability of current analytical 

methods to determine the effect of a lower level unit on the higher level construct (Goldstein, 

2003; Heck & Thomas, 2000; Kline, 2005; Raudenbush & Bryk, 2002; Singer & Willett, 2003; 

Snijders & Boskers, 1999). The software packages used to conduct multilevel analysis cannot 

provide these estimates (e.g., SPSS, HLM, MLwiN; Croon & van Veldhoven, 2007). The basic 

conundrum is that individual influence is bound up in the interactive processes of emergence. 

Researching emergence provides a window to begin mapping how such processes 

function. However, there are significant challenges to studying it. First, emergence as a process 

has received only limited theoretical attention in multilevel research. The observational flexibility 

of qualitative research provides one window for theory building (e.g., Orlikowski, 1992; 

Orlikowski & Yates, 2002). Extant frameworks for multilevel theory (Chen et al., 2004, 2005; 

Kozlowski & Klein, 2000) and measurement (Bliese et al., 2007; Chan, 1998) also provide a 

point of departure. For example, the Typology of Emergence (Kozlowski & Klein, 2000) is 

consistent with our core conceptual foci and it specifically describes different processes of 

interaction and exchange that yield different emergent forms, ranging from composition (i.e., 

convergent forms) to compilation (i.e., divergent forms). Thus, it provides a useful conceptual 

foundation for theory building. However, the fundamental process mechanisms relevant to 

specific substantive phenomena would typically have to be elaborated in more precise detail. 

This is particularly true for the non-linear, compilation forms of emergence.  

Second, emergence takes time to unfold and manifest. That means using longitudinal 

research designs and, to truly capture complexity in emergence, intensive longitudinal designs 
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with many repeated measurements; not 5 or 10 or 20, but 30 or more (DeShon, 2012; Walls & 

Schafer, 2006). Sampling frequency should be dictated by the theory and research about the 

anticipated rate of change in the process mechanisms. This sets some obvious limitations on a 

heavy reliance on questionnaires as the primary source for the underlying data (i.e., 

intrusiveness, fatigue, response biases, construct drift, etc.). Moreover, for any particular 

research focus, the time scales relevant to how the phenomenon unfolds is critical to research 

design and measurement. This is particularly the case if the interaction processes are 

compressed into relatively short time frames. It is also the case that the process mechanisms of 

emergence are not likely to be captured well by modeling mean linear change trajectories over 

time (i.e., emergence as growth; Corning, 2002). That is merely one simple form. The more 

important focus of emergence is on process mechanisms and dynamics: how lower level 

characteristics coalesce or diverge to create meaningful higher level patterns. 

Third, examining emergence for team processes is best conducted when a team or 

social unit first springs into being (Kozlowski & Klein, 2000). In existing social units with a 

history, emergence has already happened for most major phenomena. As Epstein (1999) notes, 

“If you didn’t grow it, you didn’t explain its emergence” (p. 42). That means researchers have to 

capture teams at pre-formation (to assess any relevant individual differences), characterize the 

context (if possible), and then assess the development of the team long enough to capture 

emergence of the phenomena of interest. This is difficult to accomplish to say the least, which is 

perhaps why there is so little quantitative research on team development, let alone on 

emergence. Finally, all the typical concerns regarding sufficient sample size within and across 

teams and sufficient variability on all relevant substantive factors are still relevant. In our view, 

these challenges will be difficult to resolve with a sole reliance on conventional laboratory and 

field research designs using questionnaires that dominate organizational research.  

Research Design Approaches  

As illustrated in Figure 2, Kozlowski and Chao (2012b) described how empirical 

treatments of emergence in organizational research can be classified into four quadrants of a 

two by two matrix, structured by (a) the methodology used (qualitative or quantitative) and (b) 

the form of investigation (indirect or direct). With respect to qualitative research, quadrant 1, 

qualitative indirect, is characterized by research using retrospective accounts (e.g., interviews, 

case studies, etc.) that attempt to capture interpretations of emergence after it has occurred. 



Emergence 11 

 

Emergence is an inference; the process is not captured directly. Quadrant 2, qualitative direct, is 

characterized by research that situates the observer in the midst of the people and system 

undergoing change (e.g., ethnography, participant observation, participatory action). With 

sufficient exposure across time, emergence as a process is captured directly in the observer’s 

constructive interpretation and rich description. Kozlowski and Chao (2012b) noted that the vast 

majority of direct empirical research on emergence in organizational science is qualitative. This 

research foundation offers theoretically rich accounts about potential process mechanisms 

undergirding emergence. Examining such processes with an eye toward precision, verification, 

and replication necessitates advances in quantitative research design.  

<Insert Figure 2 About Here> 

Our focus is on advancing quantitative research, where treatments of emergence have 

been limited. Quadrant 3, quantitative indirect, is represented by contemporary micro-meso 

multilevel research that focuses on emerged constructs. This approach assumes a model of the 

emergence process (i.e., there is a theoretical rationale for how the phenomenon at the lower 

level combines to manifest at the higher level), but does not assess it directly. The emergence 

process is not the research focus, the emerged construct is. Emergence is an inference. 

Quadrant 4, quantitative direct, is largely characterized by simulation research using 

computational modeling in an effort to model the system dynamics of emergence. This 

approach treats the process of emergence as the central phenomenon of interest. Representing 

mechanisms that drive the process of emergence formally (i.e., mathematically) is the focal 

concern. The quantitative indirect and direct approaches employ distinct research designs and 

methods and, thus, there has been very little cross fertilization. Yet, they have countervailing 

strengths and weaknesses. There is a potential for integration that can yield a hybrid research 

design with compelling theoretical and methodological advantages. We briefly describe each 

approach, identify strengths and limitations, and highlight how integration would enhance theory 

building and research design for the study of multilevel emergence. 

Quantitative indirect approach. Contemporary cross-level and multilevel modeling in 

organizational behavior largely takes an indirect approach to emergence. Such research 

examines cross-level or multilevel models that incorporate combinations of direct, mediating, 

and / or moderating effects (Aguinis, Boyd, Pierce & Short, 2011; Kozlowski & Klein, 2000). 

Emergence is relevant in such models when a phenomenon originates at a lower level in the 
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system (e.g., individual cognition, motivation / affect, behavior), but emerges theoretically as a 

higher level construct (e.g., team mental models, team collaboration). In this treatment, 

conceptualization of the process of emergence is important for guiding the level of 

measurement (i.e., at what level the construct should be measured and item referent 

specification), representation (i.e., how the data are aggregated or represented at the higher 

level [e.g., mean, variance, proportion]), and level of theory and analysis (i.e., level for model 

testing, inference, and generalization). However, the process of emergence is not examined. 

Construct / measurement frameworks provide guidance to help researchers 

appropriately measure the phenomenon at the lower level and substantiate its representation at 

the higher level of analysis. Bliese et al. (2007) describe the conceptual challenges of 

aggregating lower level data to the higher level. Aggregation either maintains the lower level 

meaning or can yield a substantively different construct at the higher level; this problem is not 

trivial (Bliese, 2000; Chen et al., 2004, 2005; Sampson, 2003). Chan (1998), for example, 

distinguished five types of composition models (i.e., additive, direct consensus, referent shift, 

dispersion, and process). Although there are important conceptual differences, most types rely 

on the unit mean (i.e., additive, direct consensus, referent shift) for representing the higher level 

construct.4 Dispersion models treat within-group variance as a meaningful focal construct, 

instead of error variance (Bliese & Halverson, 1998; Brown, Kozlowski, & Hattrup, 1996). 

Process models focus on how a process at a lower level might be conceptualized at a higher 

level (e.g., Kozlowski, Gully, Nason, & Smith, 1999). Chan offers no algorithm for representation 

and suggests more conceptual development of this model is needed to address the dynamics of 

change. Process models are essentially about emergence.  

Kozlowski and Klein (2000) developed a typology to characterize emergence 

conceptualizations ranging between ideal types of composition emergence and compilation 

emergence. Their typology encompasses the same range of types as Chan, but more 

theoretical attention is devoted to explicating the process mechanisms of emergence and 

making the different mechanisms explicit in the typology. It is the non-linear compilation forms 

 
4 Additive models use sums or means of lower level units (individuals) to represent constructs at a higher 
level (groups); they make no assumptions about isomorphism or similarity of the construct across levels. 
Direct consensus and referent-shift models incorporate assumptions of isomorphism and use restricted 
within-group variance (i.e., consistency or consensus) to support aggregation using the unit mean to the 
higher level; using data referring to the lower level directly (e.g., rate your perceptions) or to a referent-
shift (e.g., rate how other group members perceive). 
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that characterize the most interesting – and least studied – types for investigation. These and 

other frameworks (Bliese, 2000; Chen et al., 2004, 2005) are used to provide a theoretical basis 

for (a) specifying assumptions about the emergence process for a construct and (b) drawing 

emergence inferences to provide construct validity for the aggregated representation.  

Key strengths of this approach are the construct validity it extends to emergent 

constructs and, thus, inferences drawn about their meaning and generalization at higher levels. 

This is by no means trivial. It took a quarter century of theory, research, and discourse to 

develop the conceptualization, methods, results, and scholarly consensus to support the validity 

of emerged/aggregated constructs. Considering the research challenges highlighted previously, 

one could use a longitudinal field research design to track the emergence of team processes 

using this approach. For example, with appropriate sampling one could track the degree of 

within-group agreement on constructs of interest and model their convergence, divergence, and 

variance over time using LGM (Kozlowski, 2012). A similar design could be employed with a 

laboratory simulation, assuming that the phenomenon emerges quickly. 

Nonetheless, the approach also has some inherent limitations. First, by virtue of the 

primary use of questionnaires for measurement in both field and lab research, the assessment 

is typically self-reported and retrospective over some time frame. Even if the investigator is 

interested in the emergence process per se, this method of measurement tends to miss the 

fundamental mechanisms underlying the process. Second, the assessment is typically static. It 

need not be so, but the primary purpose of this approach (i.e., to populate a model with 

measures of stable constructs) generally yields a single assessment of the construct in 

question. The measurement periods could be spaced over time to help reduce causal ambiguity 

among constructs (Collins & Graham, 2002), but that is not common practice. Cross-sectional 

designs predominate in field research (e.g., Austin, Scherbaum, & Mahlman, 2002) and lab 

research is more sensitive to temporal ordering than it is to emergence as a process (e.g., 

Kozlowski, 2012). Third, emergence as a process is assumed within this approach and is 

typically treated as universal for all units. We know from the limited research that treats within-

group agreement as a substantive construct of interest rather than a mere statistical criterion for 

aggregation (Brown et al., 1996) that this assumption is tenuous at best (Gonsalez-Roma, 

Peiro, & Tordera, 2002; Schneider, Salvaggio, & Subirats, 2002).  
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Quantitative direct approach. Most quantitative research in the social sciences relevant 

to emergence as a process of direct interest has utilized computational models and agent-based 

simulation as the primary research design approach (Epstein, 1999; Miller & Page, 2007). A 

computational model provides a mathematical depiction of a phenomenon of interest 

representing the mechanisms by which a dynamic process unfolds (Busemeyer & Townsend, 

1993; Hulin & Ilgen, 2000; Miller & Page, 2007). It is focused on the theoretical mechanisms of 

emergence as a process. Such models specify mathematical equations or logical if-then 

statements to specify system dynamics from one time point to the next (Harrison, Lin, Carroll, & 

Carley, 2007; Vancouver, Tamanini, & Yoder, 2010; Vancouver, Weinhardt, & Schmidt, 2010). 

Thus, the computational model formally specifies a set of rules or goals that guide the behavior 

of entities or “agents” of interest, in dynamic interaction with other entities. Typically, the 

behavioral rules are theoretically driven (although atheoretical descriptive models are possible). 

An agent-based simulation instantiates the computational model in programming code, arranges 

the agents at time 0 into an environment, and executes dynamic interactions among the agents 

following the rules within the constraints of the environment. Collective, system level 

phenomena emerge as the simulation runs and individual agents interact dynamically over time. 

The computational, agent-based simulation of bird flocking by Reynolds (1987) is a good 

illustration of how a concise set of basic process mechanisms can emulate complex, system 

level behavior that emerges from the dynamic interactions of individual agents – BOIDS. The 

agents optimize three basic rules: (1) the separation rule directs boids to move away from other 

agents to minimize collisions, (2) the alignment rule directs boids to move in the average 

direction of other agents, and (3) the cohesion rule directs boids to move to the center of the 

cluster. Boids are randomly placed in a computational space, and the simulation runs. As the 

code for each boid maximizes its rule set – in dynamic interaction with the other boids – 

collective flocking emerges. Flake (1998) proposed the addition of a fourth view rule – move to 

avoid boids blocking the view – that then yields the V-formation of a migrating flock. This 

computational simulation is an excellent example of how complex group behavior emerges 

dynamically from individuals striving to maximize a parsimonious set of goals or rules as they 

interact with other goal striving individuals, within the constraints of the environment.  

A key issue for the effective use of computational, agent-based modeling as a research 

design approach pertains to drawing meaningful inferences about the correspondence of the 
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process rules inherent in the computational model and the natural phenomenon of interest. As 

noted by Epstein (1999), “Agent-based models provide computational demonstrations that a 

given micro specification is in fact sufficient to demonstrate a macrostructure of interest” (p. 42). 

This concept of “generative sufficiency” is consistent with concepts of, and evidence for, 

construct validity. It is important to note, however, that mere fidelity is necessary but not 

sufficient to demonstrate that a given set of micro behavior specifications (i.e., rules) account for 

the observed behavior in the natural system. Real birds, for example, do not necessarily strive 

to maximize the four boid rules. Fidelity makes those rules appropriate candidates for 

explanation, but other competing rules need to be considered and evaluated. Theory provides a 

guide and, importantly, more direct correspondence and verification with real world data and 

experimentation are necessary (Epstein, 1999).  

Computational models and agent-based simulations have several key advantages as a 

direct research design approach for emergent phenomena in teams, especially considering the 

research challenges highlighted previously. For example, the computational model necessitates 

a formal specification of the theoretical mechanisms (i.e., precision) and the idea is to model the 

system with as few rules as necessary (i.e., parsimony) to simulate the emergent phenomenon 

in question. Time periods and sampling frequencies are restricted only by computing power. 

Teams are easily formed anew and tracked across a hypothetical life cycle. And, any number of 

teams with variability on any number of characteristics can be examined in any number of 

environmental contexts; again, only constrained by computing power. This enables virtual 

experimentation in a model space that can fully encompass variance across all theoretically 

relevant factors. This is a major advantage relative to more conventional research designs. 

These are significant strengths for the study of emergence, but there are important 

limitations that have to be acknowledged. Theoretical complexity is one. Human behavior is 

complex and multiply determined, but computational simulations (at least in the beginning of a 

research program) are better when sparse. The many specific theories of team functioning or 

organizational behavior are primarily “word” based using natural language descriptions, rather 

than clearly specifiable process mechanisms. Thus, computational modeling will often 

necessitate theory building to specify process mechanisms with precision; perhaps not a bad 

thing for advancing organizational science. Moreover, once mechanisms are specified in a 

computational model, parameter values to operationalize the mechanisms need to be extracted 



Emergence 16 

 

from the literature so agent behavior is calibrated realistically. This is not as straight forward as 

one might expect and initial model parameters can be imprecise. However, as we describe later, 

coupling computational modeling with conventional research designs provides a means to co-

evolve the specification of model mechanisms and parameter values. Finally, validating a 

computational model necessitates real data so the veracity of the model and its parameters can 

be established. Relevant data may not exist, may be difficult to acquire, or may lack the 

necessary granularity to provide good assessments of model fidelity and fit (Hulin & Ilgen, 

2000). This means that one has to be thoughtful about the phenomenon one chooses to model. 

Given its potential to model complex, dynamic, emergent, system behavior, 

computational modeling has substantial potential as a research design approach for studying 

emergence in organizational science, particularly those aspects that are very challenging with 

traditional laboratory or field observations. However, there has been only very limited attention 

to applying this approach. Most applications have been macro oriented (Harrison et al., 2007), 

although there have been some with a more psychological focus on withdrawal (Hanisch, Hulin, 

& Seitz, 1996) and motivational processes (Vancouver, Tamanini, & Yoder, 2010; Vancouver, 

Weinhardt, & Schmidt, 2010). “Modeling is the “redheaded stepchild” of organizational research 

methods; it is useful for a number of issues important to behavior in organizations, but it has 

been little used and is little appreciated” (Hulin & Ilgen, 2000, p. 7). 

An integration. We think it is evident that indirect and direct approaches to studying 

emergence quantitatively have countervailing strengths and weaknesses. We assert that a 

thoughtful integration of these distinctive methodologies can enable quantitative researchers to 

begin probing the processes of multilevel emergence. Field-based correlational designs (i.e., 

non-experimental) and laboratory-based experimental designs have offsetting strengths and 

weaknesses. Field research is typically viewed as stronger on generalization and weaker on 

causal inference relative to lab research. Researchers are well schooled in these trade-offs. 

Good research to understand a problem domain has to utilize both designs to ensure solid 

inference and good generalization. Hulin and Ilgen (2000) characterize computational modeling 

as a “third discipline” commensurate with Cronbach’s (1957) characterization of correlational 

and experimental designs as the two primary research disciplines of scientific psychology. Just 

as correlational and experimental research have offsetting strengths and limitations, so does 

computational modeling as a third discipline relative to the other two. We are not advocating that 
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computational modeling be used instead of conventional quantitative research. Rather, we are 

advocating that organizational science embrace computational modeling as an additional 

research methodology that has distinct advantages for studying the dynamic processes that 

undergird emergence. As we explicate in the next section, computational modeling has an 

important and valuable role to play as a methodology for conducting virtual experimentation and 

building theory. Modeling enables discovery. Tried and true conventional quantitative methods 

are still essential for estimating parameter values for mechanisms, testing predictions from 

virtual research, and verifying model findings. 

Advancing Multilevel Research on Emergent Phenomena 

Exemplars: Emergent Team Processes and States 

Criteria. It is useful to reemphasize the core foci for conceptualizing multilevel emergent 

phenomena from our definition (see Figure 1). First, emergent phenomena are multilevel, 

transcending their level of origin. They originate at a lower level and emerge as a collective 

macrostructure at a higher level (Crutchfield, 1994, Epstein, 1999; Kozlowski & Klein, 2000). 

Second, they are process-oriented, with emphasis on the dynamic interactive process 

mechanisms that drive the nature of, and forms of, emergence from the lower to the higher level 

(Kozlowski et al., 1999). Third, they are temporally sensitive. Manifestation of the collective 

property takes time, entailing developmental and episodic changes (Bedwell, Wildman, 

DiazGranados, Salazar, Kramer, & Salas, 2012; Marks, Mathieu, & Zaccaro, 2001). 

Exemplars. The meso level, at the intersection of the micro and macro, provides a rich 

slice of organizational life within which a multitude of emergent phenomena exist. Most “team 

processes” are not researched as emergent phenomena, although they are certainly 

conceptualized as emergent because they incorporate the core conceptual foci. Thus, they 

provide theoretically appropriate and practically relevant targets for theory building and research 

program development aimed at unpacking the nature of emergence in organizational behavior. 

We have synthesized across reviews and taxonomies to identify a range of exemplar emergent 

phenomena in teams ripe for research and investigation. The listing shown in Table 1 is not 

intended to be comprehensive – we have not tried to list all emergent phenomena – but instead 

to illustrate the wide array of phenomena for which a research focus on emergence is relevant. 

These are potential targets for new research. 

<Insert Table 1 about here> 
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Fundamental research questions. Multilevel research does not examine the emergence 

of these phenomena directly, although it does examine whether aggregating individual 

perceptions or behaviors into a higher level construct is justified. Thus, there are several 

fundamental research questions that are relevant for each of these phenomena, as well as for 

others we did not list, that are currently unexplored in the literature. This represents a 

substantial gap in organizational science. Addressing these fundamental questions is relevant to 

advance theory and to develop interventions and tools to shape emergence processes. 

▪ What are the primary micro process mechanisms that account for emergence for the 

phenomenon of interest? 

o What parsimonious “rules” drive human interaction and exchange such that a 

collective macrostructure manifests (Epstein, 1999)? 

▪ How do patterns of emergence evolve for the phenomenon of interest?  

o What forms do they assume? Composition via convergent forms? Compilation 

via divergent forms? Complex patterns that may involve both convergent and 

divergent processes (Kozlowski & Klein, 2000)? 

▪ What are the primary antecedents that shape the nature of the emergence process? 

o What individual characteristics and contextual (environmental) constraints shape 

the process, pattern, and outcomes of emergence? 

▪ What kinds of shocks shape or change the nature of the emergence process? 

o Shifts in the context may fundamentally alter patterns of composition or 

compilation emergence.  

In the next section, we examine limitations inherent in the indirect research designs 

applied to select exemplars in Table 1, and highlight the benefits of incorporating direct designs 

that use computational modeling. We sampled across the categories to showcase the generality 

of a focus on emergence and modeling. We selected team mental models from the cognitive 

category5, social dilemmas from the group decision category, and collaboration from the 

behavior category. For each exemplar, we describe the conceptualization of the phenomenon, 

general treatment in mainstream research, and the usual research design used to study the 

phenomenon. We then highlight fundamental research questions that are not addressed or not 

 
5 Because of their highly similar measurement approaches, the issues in the motivation and affect 
category are virtually identical to those in the cognitive category. We just illustrated for cognitive. 
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addressed well, and illustrate how computational modeling and agent-based simulation can be 

used to illuminate the phenomenon, promote theory building, and enhance understanding.  

Team Process Perceptions: Team Cognition 

Conceptualization. Shared Team Mental Models (STMM) and Transactive Memory (TM) 

are commonly studied team cognition perceptions. STMM’s represent the “… knowledge 

structures held by members of a team that enable them to form accurate explanations and 

expectations for the task, and in turn, to coordinate their actions and adapt their behavior to 

demands of the task and other team members” (Cannon-Bowers & Salas, 2001, p. 228). In 

contrast to this shared conceptualization, TM is a team-level system distributed across team 

members for encoding, storing, and retrieving team knowledge (Wegner, 1995; Wegner 

Giuliano, & Hertel, 1985). STMM’s are viewed as having emerged via composition emergence, 

whereas TM’s are conceptualized as emerging via compilation processes. 

Both STMM and TM are viewed as emergent states that reciprocally shape, and are 

shaped by, interactions among team members (Marks et al., 2001). Conceptually, they are 

created through an emergence process that begins at the individual level and, through repeated 

interactions, manifests at the team level. The predominant focus of research on these team 

cognitive constructs is consistent with the Input-Process-Output model of team effectiveness 

(McGrath, 1964) or its more recent variants (Ilgen, Hollenbeck, Johnson, & Jundt, 2005; 

Kozlowski & Ilgen, 2006). It is treated as a mediator that links a variety of antecedents such as 

team composition (Edwards, Day, Arthur, & Bell, 2006), team communication (Lewis, 2004; 

Marks, Zaccaro, & Mathieu, 2000), team coordination (Mathieu, Heffner, Goodwin, Salas, & 

Cannon-Bowers, 2000), leadership (DeChurch & Marks, 2006), and training (Liang, Moreland, & 

Argote, 1995; Marks, Sabella, Burke, & Zaccaro, 2002) to team effectiveness outcomes such as 

team performance and viability (DeChurch & Mesmer-Magnus, 2010a, 2010b; Lewis, 2004). 

Research treatment. Given the primary research focus on team cognition as a mediator, 

almost all studies have measured STMM’s and TM through the use of indirect quantitative 

methods. There are two primary ways in which STMM’s are typically measured and 

operationalized (DeChurch & Mesmer-Magnus, 2010a). If the focus is on the congruence of 

knowledge content, then questionnaires are administered to each member of the team and their 

responses are aggregated to form a collective construct. Prior to aggregation, a team 

agreement index such as rwg or a team interrater reliability index such as the intraclass 
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correlation coefficient (ICC(1)) is used to verify that there is sufficient restricted within group 

variance among members, indicating that the construct has emerged at the team level. 

Alternatively, if the focus is on the congruence of knowledge structures, then each team 

member completes a card-sort task or Pathfinder to create a structural representation of team 

knowledge. Congruence across members is computed by taking the Euclidian distance between 

the structures of the team members. Much like STMM knowledge content, TM is typically 

measured using a scale developed by Lewis (2003) to assess the degree of within-group 

consensus on perceptions of the distributed knowledge structure of the team. This approach 

measures each individual’s understanding of the teams’ TM and then aggregates their 

responses to the team level if sufficient agreement (using ICC(1) or rwg) is achieved.  

Researching emergence. Informative relationships among antecedents, emerged STMM 

and TM constructs, and team effectiveness have been examined using this methodology. Yet, a 

key limitation with the use of ICC(1), rwg, and Euclidian distance as indicators of STMM and TM 

emergence, is that sufficient team member agreement must be reached for the measure to be 

aggregated as a team level construct, implying that emergence is complete. The assessment is 

retrospective and emergence is an inference based on the indicators of restricted within group 

variance on the construct measure. There is no direct observation of emergence as a process. 

There is also a gap between the conceptualization and measurement of TM. STMM’s as 

shared knowledge among team members represents a compositional emergent state. In 

contrast, the conceptualization of TM is based on a distribution or pattern of knowledge held 

across team members, a compilational emergent state. The commonly utilized methodology to 

study TM does not capture the compilational nature of the construct conceptualization. As a 

result, the uniqueness of TM as a compilation construct, above and beyond STMM’s, has not 

been examined (Kozlowski & Ilgen, 2006). 

These are substantial gaps in the team cognition knowledge base that are largely due to 

measurement and research design limitations inherent in an indirect assessment of STMM and 

TM emergence. However, the emergence of STMM’s and TM can be studied directly through 

the use of computational simulation. This would allow researchers to supplement current 

approaches – that examine I-P-O relations among antecedents, STMM’s, TM’s, and team 

outcome constructs – with theoretically driven quantitative investigations into the process 

mechanisms of emergence that undergird the formation of these relationships. Combining a 
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fine-grained theory with the use of computational simulations would allow researchers to explore 

directly how antecedents influence the emergence of team cognition, variation in the ways in 

which emergence unfolds, and how process variations influence relevant outcomes. For 

example, research on STMM emergence has mathematically specified theoretically driven 

behavioral cues that contribute to team cognition (McComb, 2007), as well as to estimate how 

different leadership styles interact with task properties to alter the formation of STMM’s and 

affect team performance (e.g., Dionne, Sayama, Hao, & Bush, 2010). Similarly, researchers 

have attempted to test how different patterns of STMM emergence can lead to different team 

decision making strategies (Sayama, Farrell, & Dionne, 2011). Sayama et al. (2011) identified 

one particular pattern of STMM emergence that led teams to focus on only a small amount of 

task-relevant information. This finding provides one possible explanation for the common finding 

that teams tend to focus primarily on sharing common information and ignore unique 

information, which yields biased decisions (Stasser, 1992). 

The examples demonstrate how computational modeling can be used to systematically 

examine process mechanisms thought to drive construct emergence. Despite the potential of 

this approach, such research has barely tapped its potential. Many important questions as to 

how STMM’s and TM emerge over time are unaddressed. Of particular importance is advancing 

understanding of how STMM composition and TM compilation processes influence one another 

over time. In current research, these forms of shared cognition are largely studied independently 

(DeChurch & Mesmer-Magnus, 2010b). Yet, both forms of team cognition are theoretically 

relevant. For example, it is conceivable that in some teams (i.e., with distributed expertise), 

knowledge begins initially as widely distributed across members; consequently, the manner by 

which the transactive memory system emerges within the team (i.e., how individuals learn who 

knows what on the team, the mechanisms by which members store and extract information from 

others) is fundamental. Over time, however, as team members share their unique distributed 

information (e.g., Fiore, Rosen, Smith-Jentsch, Salas, Letsky, & Warner, 2010), team 

knowledge may converge to a common cognitive representation; a shared mental model. Thus, 

in this example, team knowledge evolves from a patterned compilation form of emergence to a 

converged composition form (Kozlowski & Chao, 2012a). Conversely, for other teams members 

may initially have identical information, such that the emergence of a shared team mental model 

has priority. Over time, however, as each team member searches for new information or has 
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unique experiences, distributed expertise develops. Team knowledge evolves from a shared 

composition form of emergence to a configural compilation form.  

Another research target could examine how STMM’s and TM systems change as new 

information is discovered. As teams accumulate experience, encounter novel situations, and 

work collaboratively to complete their tasks, members may need to integrate new information 

(e.g., a new task protocol requires that members incorporate a new information source). The 

way that new information sources are embedded within and reshape the knowledge structures 

of individual members should subsequently influence the quality and effectiveness of STMM’s 

and TM systems. Although this issue has not been pursued at the team level, research 

investigating the growth of individual semantic networks offers a potential point of departure. 

Specifically, researchers have developed computational simulations that plausibly model the 

process by which newly learned words are incorporated into a person’s semantic network based 

on the characteristics and interrelations among existing words in memory (Steyvers & 

Tenenbaum, 2005). Such a model could be adapted to explore how STMM’s and TM systems 

react to and absorb the “shock” of members learning to make use of novel information. 

For cases such as these, directly investigating the emergence of STMM’s and TM 

through the use of computational simulation can be valuable for theoretical insights. Given a 

theoretical specification of the emergence process, it is possible to manipulate different initial 

knowledge distributions, task demands, team durations, and other antecedents and moderating 

factors of interest to determine how they affect teams’ STMM and TM emergence. Relevant 

research foci include investigation of factors that shape the form of emergence (composition or 

compilation); influence the rate of emergence; or affect the stability of the emerged form (e.g., 

Kozlowski & Chao, 2012a; Kozlowski, Chao, Grand, Braun, & Kuljanin, 2012). In addition, it is 

also possible to examine how the emergence of STMM’s and TM interact over time, or evolve 

along different tracks, to make teams differentially effective at adapting to task characteristics. 

Determining such relationships with conventional experimental or correlational research designs 

would be very challenging, which is likely why these conceptual issues have not yet been 

pursued empirically. The use of computational simulation to supplement conventional designs 

can therefore provide researchers with unique insights for theory building and for better 

targeting the focus of conventional research designs. 
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Group Decision Making: Social Dilemmas 

Conceptualization. Social dilemmas are problems that oppose immediate individual 

gains against long-term collective interests (Oskamp, 1971; Dawes, 1980). This research area 

is a good exemplar because over 50 years of traditional quantitative research and 30 years of 

computational modeling have yielded a large body of knowledge that, together, advance 

theoretical understanding of how and why cooperative decision making emerges in a group. 

Dilemmas between individual gains and collective losses can lead to catastrophic societal 

problems if the combined behaviors of too many self-serving individuals result in egregious 

depletion of natural resources, pollution, or overpopulation (Dawes, 1980). Core research 

examines how cooperative behavior emerges within groups to preserve collective interests. 

Research treatment. Research on social dilemmas generally involves mixed-motive 

games with explicit payoffs, requiring individuals to either cooperate (C) with one another for a 

modest payoff or to defect (D) from such cooperation and thereby win a bigger payoff from a 

selfish advantage. A common example is the Prisoner’s Dilemma (PD) game (Axelrod, 1980a, 

1980b; Luce & Raiffa, 1957), where two players generate four possible payoffs that are rank-

ordered: DC > CC > DD > CD for the first player (i.e., first letter in the two-letter decision 

outcome). Game rules generally embody two properties of social dilemmas: (1) the payoff for 

defecting is higher than the payoff for cooperating, regardless of what others do, and (2) if all 

individuals cooperate, the payoff is higher than if all individuals defect (Dawes, 1980). Iterated 

PD games examine decision making strategies that emerge as a history of interactions unfolds. 

A computer search of peer-reviewed published articles on social dilemmas yielded over 

3,500 hits. Researchers from several disciplines contribute to this literature, using a variety of 

social dilemma contexts and research designs (Gotts, Pohill, & Law, 2003). Within psychology, 

much of the empirical research involves laboratory experiments, with few field studies (e.g., 

Joireman, Van Lange, Van Vugt, Wood, Leest, & Lambert, 2001). Individual differences are 

generally treated as antecedents for cooperative behavior and include studies on social value 

orientation (Baillet, Parks & Joireman, 2009), mood (Hertel, 1999), trust (Foddy & Dawes, 

2008), individualism/collectivism (Boles, Le, & Nguyen, 2010), and gender (Walters, 

Stuhlmacher, & Meyer, 1998). Experimental manipulations of the social dilemma context are 

designed to compare different rates of cooperation. Game conditions such as small group sizes, 

external authorities who can regulate player behavior, and sanctions against defectors have all 
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been found to promote cooperation (Dawes, 1980, Kollock, 1998). Other research has varied 

game conditions related to communication (Orbell, van de Kragt, & Dawes, 1988; Samuelson & 

Watrous-Rodriguez, 2010), feedback (van Dijk, De Cremer, Mulder, & Stouten, 2008), rewards 

and punishments (Bailliet, Mulder, & van Lange, 2011) and uncertainty (Kramer, 2010). Despite 

this large body of research, and common usage of longitudinal designs, the emergence of 

cooperation in group decision-making is not directly examined. Rather, it is inferred from 

cooperation rates, measures of common resources used, or contributions to other players.  

Researching emergence. Remarkably, despite the 1,000-plus experiments with the PD 

metaphor for social dilemmas (Dawes, 1980), there has been no systematic effort to identify the 

process by which cooperation emerges. Research includes many one-shot PD studies that were 

not designed to examine how decision making strategies unfold and adapt to a history of 

exchanges. Furthermore, results from iterated PD studies are generally aggregated across trials 

to examine rates of cooperation at the end of the study, instead of examining how those rates 

evolve over time. Experiments provide valuable insights on who is predisposed toward 

cooperative decision making and what conditions might facilitate cooperation, but they have 

practical constraints related to sample sizes, number of conditions, and capturing a process 

within one game play. Thus, understanding the multilevel, process-oriented, and time-

dependent foci of emergence are challenged with these research methods. 

In contrast, computer simulations are not constrained in ways that limit experimentation. 

For example, Fischer (2003) ran 30 replications of simulations that crossed 8 rates of iterations 

per interaction with 4 initial distributions of decision making strategies, for a total of 960 

simulations. Furthermore, each simulation ran with 300 agents, the number of iterations per 

interaction ranged from 1 to 10,000, and an entire simulation ran for 200,000 iterations of 

interactions between two agents. These simulations provided evidence that the emergence of 

cooperative strategies was highly influenced by the duration of social influence (iterations per 

interaction). Smithson and Foddy (1999) argued that simulations offered more control than 

empirical research because the range of relevant conditions can be thoroughly and 

systematically examined with large numbers of agents that can be reset for reruns.  

Computer simulations often examined multiple agents playing PD games in a two-

dimensional space (Axelrod, 1997: Nowak & May, 1992). These simulations provide a more 

realistic and dynamic decision making context where agents are not equally likely to play with all 
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other agents. Agents only play with their neighbors, they can learn strategies from better 

players; and they could move about, seeking new neighbors to play subsequent games. For 

example, Helbing, Yu, and Rauhut (2011) examined two strategies for iterated PD simulations in 

their game environment. First, social learning was modeled by having an agent adopt the 

strategy of its most successful neighbor. Second, agents could move to unoccupied spaces, 

searching for new players that might prove to be more successful for the agent. Computer 

simulations of each strategy alone resulted in low levels of cooperation. However, when the two 

strategies were combined, individual behavior and social environments coevolved, resulting in 

the emergence of cooperative clusters. Cooperating agents clustered together, forming a tight 

community that maintained cooperation. In contrast, defectors were relegated to the boundaries 

of these cooperating neighborhoods, unable to penetrate inside the cluster. Such findings are 

insightful for theory building. Other simulations with spatial PD games have examined the 

importance of sufficient learning intervals to the emergence and sustainability of cooperation 

(Fischer, 2003), the emergence of role differentiation (leaders) in self-organized clusters 

(Eguíluz, Zimmermann, Cela-Conde, & San Miguel, 2005), and the moderating effect of 

heterogeneity of degree (variance in social network ties) on the emergence of cooperation 

(Jones, 2008; Roca, Sánchez, & Cuesta, 2012).   

 Although we did not find any research that directly integrated quantitative empirical 

research and simulation methods, researchers from each perspective are clearly aware of both 

bodies of work (Liebrand & Messick, 1996). For example, Kollock (1993) ran computer 

simulations, looking at noise effects on different decision making strategies. He found that the 

detrimental effects of noise could be ameliorated by more generous or cooperative decision 

making. Van Lange, Ouwerkerk and Tazelaar (2002) supported Kollock’s findings in their lab 

experiments. This research provides a good example of how human experiments and computer 

simulations are complementary and advance understanding of how people negotiate competing 

individual and group interests. Empirical research probes the complexity of social dilemmas and 

computer simulations provide systematic tests of many proposed solutions. Results from these 

two research methods stimulate new research streams within and across these methods.  

 Van Lange, Joireman, Parks, and van Dijk (2013) reviewed traditional empirical research 

on social dilemmas and noted that most variables were static in nature, unable to capture how a 

decision maker learns from others and actively responds in subsequent decisions over time. 



Emergence 26 

 

They suggest future research can target five factors related to dynamic interaction processes: 

(a) reciprocal decision making strategies, (b) reputation effects, (c) changes in group 

composition or players, (d) communication, and (e) structural solutions (e.g., selecting a leader). 

They note that the emergence of cooperation is more likely to result when a combination of 

these factors influence trust, generosity, and/or forgiveness among players. To illustrate one 

factor, reputation effects, Weber and Murnighan (2008) challenged the notion that consistent 

cooperators are suckers for exploitation by defectors. Their experimental results suggest that 

consistent cooperators had a positive effect on other players, subsequently encouraging 

cooperative behaviors from them. However, they admit that their data could not predict when a 

consistent cooperating strategy would emerge or what might stop or change this strategy. 

Simulations that examine how cooperative behaviors can self-organize and emerge as social 

units within a larger environment are likely to advance this area of group decision making.  

 Results from indirect (lab/field quantitative research) and direct (computational 

simulation) research methods should be integrated to advance understanding of social 

dilemmas, however, there remain significant challenges. Simulations by Roca, Sánchez, and 

Cuesta, (2012) found that the emergence of cooperation was extremely sensitive to micro-

dynamic changes in spatial or social structures. Not all social networks support cooperative 

behavior and results vary depending on the type of interaction (e.g., game) and information 

(e.g., updating strategy). Research can use counterintuitive findings from empirical research 

(e.g., generous cooperators are not always exploited by defectors) to inform new computational 

models to help predict when cooperation emerges and under what conditions it would change. 

Behavior and Action: Collaboration 

 Conceptualization. In an attempt to distinguish it from related concepts such as 

coordination, cooperation, and teamwork, Bedwell et al. (2012) define collaboration as “… an 

evolving process whereby two or more social entities actively and reciprocally engage in joint 

activities aimed at achieving at least one shared goal” (p. 130). Collaboration meets the core 

criteria of an emergent phenomenon: its manifestation is at a higher-level driven by the 

interactions of multiple constituent entities (multilevel; e.g., Graham & Barter, 1999; Longoria, 

2005); it is characterized by dynamic exchanges which influence and are influenced by those 

constituent entities (process-oriented; e.g., Gray, 1989; Keyton, Ford, & Smith, 2008; Lewis, 

2006); and the procedural mechanisms and resultant states require time to develop (temporally 
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sensitive; e.g., Tucker, 1991; Wood & Gray, 1991). As is true of all emergent phenomena, 

collaboration is also responsive to external, top-down environmental factors and task structures 

which shape or constrain workflows and other forms of interactive engagement (e.g., sequential 

task interdependence, Saveedra, Earley, & Van Dyne, 1993). Nevertheless, the underlying 

behavioral and psychological dynamics necessitate circumstances which permit discretion and 

autonomy (Steiner, 1972) to social entities as they perform tasks, thereby allowing them to 

engage in collaborative efforts to achieve shared goals (Bedwell et al., 2012). 

Research treatment. Within the broader research literature, examinations of team 

collaboration have been somewhat muddied by imprecise definitions and only implicit 

acknowledgement—but not direct examination of—its dynamic processes (Bedwell et al., 2012; 

Henneman, Lee, & Cohen, 1995). The general focus of mainstream research on collaboration 

has largely centered on antecedents (e.g., Salas, Sims, & Burke, 2005) and outcomes (e.g., 

Stout, Cannon-Bowers, Salas, & Milanovich, 1999) of the process or factors which purportedly 

shape individuals’ collaborative interactions (e.g., Saveedra et al., 1993; Stout, Salas, & 

Fowlkes, 1997). Over the past decade, greater attention has also been directed towards 

capturing descriptive measures of team processes and examining relations between the 

frequency or quality of team behaviors indicative of collaboration and various indicators of team 

functioning and effectiveness (cf., LePine, Piccolo, Jackson, Mathieu, & Saul, 2008). Although 

varied depending upon the research question of interest, the modal quantitative approaches 

applied to the study of team collaboration have most often been correlational, cross-sectional, or 

(more rarely) repeated measures designs using a small number of observations. To be sure, the 

aggregate findings from the current literature have significantly improved our understanding of 

the various factors that influence and result from a team’s collaborative efforts. Nevertheless, 

these modal methodological approaches and research foci have not yet offered great insight 

into the fundamental research questions we have posed previously for the study of emergent 

phenomena. As a result, there is substantial value to be added to this research domain through 

investigation of the dynamic forms, mechanisms, and changes related to team members’ 

interdependent exchanges which characterize team collaboration. 

 Researching emergence. Like the shared team mental models, transactional memory, 

and social dilemma exemplars, computational modeling techniques offer a number of 

advantages over current research designs for capturing emergence. For example, physicists 
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have begun to develop computational models which directly investigate patterns of human 

interaction that may prove useful for understanding the emergence of collaboration (Barabási, 

2005; Oliveira & Vazquez, 2009). One particularly useful model, proposed by Min, Goh, and Kim 

(2009), consists of a group of computational agents linked together via two different network 

topologies (i.e., star network versus fully-connected network) performing tasks with or without 

the help of a teammate under two sets of rules for interaction (i.e., both agents consent to work 

with each other versus one agent obliges to work with its teammate only upon request). Their 

results describe how these different network topologies and rules for agent interaction affect the 

frequency and pattern of group collaboration.  

 To further explore the process mechanisms driving collaborative group behavior and 

performance, Kuljanin (2011) built upon this approach by including individual team member 

preferences for collaborative work and additional team network topologies. Individuals differ in 

the extent to which they wish to accomplish tasks with the assistance of teammates or on their 

own depending on goals, incentives, and feedback structures (Wagner, 1995). Meta-analyses 

indicate preferences for collaborative work is an important dispositional predictor of team 

performance (Bell, 2007). However, the impact of preferences for collaborative work may be 

amplified or attenuated depending on the interconnectivity of teammates, represented by a 

team’s network topology, that then impacts team effectiveness (Losada, 1999). Among the 

unique virtual experiments pursued in the computational modeling by Kuljanin (2011), one 

primary goal was to investigate how different collaborative systems contribute to effective (or 

ineffective) utilization of the unique skills team members possess. Simulated teammates worked 

on a collaborative project consisting of numerous tasks. Each agent performed tasks on its own 

or with help from a teammate; whether a teammate agent collaborated depended on the team’s 

collaboration network, the rules for dyadic interaction, and agent preferences for collaboration. 

At a broad level, the results of this research revealed how different patterns of team interaction 

and individual differences can directly influence a team’s collaborative efforts to yield 

performance outcomes. Additional theoretical work in this domain might consider how particular 

collaborative networks and different rules for interaction emerge, as well as how these 

mechanisms and structures adapt in response to changing tasks or environments.  

Although work that links team collaboration computational models with human data in a 

singular research effort does not yet exist, such computational work fits nicely with recent 
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empirical efforts by sports psychologists that employ dynamic network analyses to study 

collaboration among team members. Studying the complete set of interactions of a youth 

basketball team for one quarter of an international game, Bourbousson, Poziat, Saury, and 

Seve (2010) verified that a human team utilized similar team collaboration networks and rules 

for interaction as those studied by Min et al. (2009) and Kuljanin (2011). While Bourbousson et 

al. (2010) focused on describing the interactions that took place within the team, Passos, Davids 

et al. (2011) mapped the team collaboration network of two competing water polo teams and 

discussed implications for their team performance. In many respects, the results of these 

empirical pursuits largely coincide with the processes, collaborative networks, and performance 

outcomes modeled by Kuljanin (2011). Consequently, such studies represent exemplary 

demonstrations of the methodological approaches one could employ to empirically validate the 

predictions gleaned from computational models of team collaboration. 

With respect to future research directions that explore emergent phenomena within this 

area, Bedwell et al. (2012) cite six key types of team member activity that characterize team 

collaboration: (a) adaptive behavior, (b) information processing, (c) sensemaking, (d) task 

execution behavior, (e) extra-role behavior, and (f) leadership behavior. Attempts to model the 

processes and mechanisms that explicate how team members enact, make use of, and 

structure interactions within each of these areas represents a rich and as yet untapped source 

of knowledge concerning how, when, and why reciprocal exchanges contribute to the 

emergence of team collaboration. As one possible point of departure, early research on 

punctuated equilibrium models of team development postulates that teams undergo sudden and 

dramatic shifts in their collaborative efforts as critical task deadlines approach (Gersick, 1988, 

1989); that is, the fundamental processes underlying team collaboration purportedly change as 

a result of team members’ recognition of the task environment’s temporal pacing. What are the 

mechanisms that describe how and why teams suddenly shift their collaborative team 

behaviors? The punctuated equilibrium model considers time as an antecedent, but time is 

merely a trigger. What do team members perceive and how does that translate into process 

mechanisms that change the dynamics and form of team member interaction? For example, 

might the various behaviors explicated by Bedwell et al. (2012) interact to produce different 

patterns of collaborative development? What is the manner by which these collaborative 

mechanisms manifest at different points in time (e.g., all team members exhibit slow change 



Emergence 30 

 

until a critical threshold is reached, some team members engage in new behavioral processes 

which stimulate others to follow suit, etc.)? In addition, contextual characteristics may shape 

emergence processes. How might different types of team configurations (e.g., leaderless teams, 

cross-functional teams, etc.) contribute to earlier or later manifestations of collaborative 

interaction? Such research questions hold significant implications for teasing apart the specific 

patterns and mechanisms of interdependent behaviors and actions directly relevant to team 

collaboration that can only be evaluated through the study of the phenomenon’s emergence. 

The area of team collaboration clearly marks a prime target for the use of virtual 

experimentation and computational modeling techniques to study the complexity of team 

collaboration dynamics. Complementing the often non-intuitive insights (e.g., a team member 

may be viewed as an ineffective contributor in one collaborative context, yet may prove an 

effective contributor to the same team under different collaborative conditions; Kuljanin, 2011) 

gained through simulation techniques with observations of actual team interactions enables 

exploration of potent behavioral mechanisms that can be targeted for validation within human 

teams (Davis, Eisenhardt, & Bingham, 2007; Kozlowski, Chao, Grand, Braun, & Kuljanin, 2012). 

More specifically, simulation models can be developed which specify the manner by which 

various behavioral mechanisms (such as those specified by Bedwell et al., 2012) interact to 

produce patterns of interaction representative of team collaboration. If desired, competing 

models can also be simulated to produce a range of possible outcomes against which to 

compare. Core propositions, novel findings, and counterintuitive results would be primary 

targets for verification. Longitudinal data could then be collected that examines the extent to 

which the computational model’s propositions and predicted outcomes are supported. On the 

basis of these results, subsequent refinements (e.g., change in algorithms which guide team 

interaction, introduction of new/different task/team boundary conditions, etc.) could be made to 

the model(s) to improve predictive capability and guide future research and theory on team 

interaction. Thus, by capitalizing on the strengths of direct (computational simulation) and 

indirect (lab/field observation) research designs for studying emergent phenomenon, one is far 

better equipped to concretely describe, diagnose, and target the specific behavioral processes 

critical to team collaboration in a manner conducive to both research and practical applications. 
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Discussion 

Status of Emergence in Organizational Science 

 We began this paper by highlighting the two fundamental systems processes in 

organizations – top-down cross-level contextual effects and bottom-up emergence – and 

describing the remarkable research neglect shown to emergent phenomena. Multilevel 

quantitative research has exploded in the literature over the last decade, but virtually all of that 

research is focused on cross-level relationships. To the extent that emergence is shown any 

attention at all in such research, it is indirect with respect to models of measurement and data 

aggregation for representing higher-order constructs. A quantitative multilevel perspective on 

organizational science has advanced, but it is only researching half of the organizational 

system. Moreover, while there is a substantial amount of qualitative research that endeavors to 

explore aspects of emergence, it generally lacks precision with respect to specifying the 

underlying process mechanisms. Some of the most interesting and perplexing phenomena – 

those that emerge dynamically over time – remain shrouded in mystery.  

 There are a number of reasons behind this situation, some theoretical and others 

methodological, but on balance we think that the primary reasons are due to research design 

limitations. As we illustrate in Table 1, there are a wide range of team process phenomena that 

are conceptualized as emergent. Beyond our focus on teams, there is an even broader array of 

organizational processes at many levels that are viewed as emergent (e.g., Weinhardt & 

Vancouver, 2012). That is a lot of raw substantive material. There is a substantial amount of 

theoretical attention to emergence in the sociological literature (e.g., Greve, 2012; Sawyer, 

2001), a foundation of qualitative research (e.g., Orlikowski, 2002), and even agent-based 

modeling exemplars (e.g., Levine & Prietula, 2012). Moreover, there are extant multilevel 

theoretical and measurement frameworks for characterizing emergence (e.g., Bliese et al., 

2007; Chan, 1998; Chen et al., 2004, 2005; Kozlowski & Klein, 2000) that can serve as 

theoretical points of departure. There is sufficient theoretical material, so the problem must lie 

elsewhere. We think “elsewhere” lies with research design constraints. 

 As we highlighted previously, there are two primary research design challenges that 

must be surmounted for emergence as a dynamic process to be a target for empirical research. 

First, capturing emergence necessitates studying social units that are new and ill formed, where 

interaction processes have yet to beget the emergence of macrostructures that then shape 
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processes (Epstein, 1999). Although this is tractable in laboratory research (with its attendant 

limitations), it is very difficult to do in real world settings.6 Organizational science has relatively 

limited knowledge about emergence and some basic expertise has to be acquired. Second, 

emergence unfolds dynamically through the interaction of individuals in a given context. One 

can assess such processes interpretively using qualitative methods, but to represent it with 

multilevel data is more challenging. Thus, to capture the dynamics of process mechanisms, it is 

necessary to collect data at a sampling frequency that is calibrated to the rate at which 

emergence evolves. Generally speaking, that means using research designs that generate 

observations at high frequencies and over lengthy periods of time. It is fair to say that neither of 

these requirements is a strong suit of the dominant research design disciplines of correlational 

and experimental research.  

Both methodological issues are limitations in the conventional quantitative methods 

research design “toolbox.” Basically, researchers have adapted conventional designs as best 

they can, but the underlying problem is that the designs do not align well with and do not 

capture the dynamic process mechanisms that are at the core of emergence. As Ilgen and Hulin 

(2000, p. 276) note, “When cognitive and behavioral processes generate regular and relatively 

uninterrupted change, when constructs and their manifestations relate to each other linearly, 

when feedback or ‘feedacross’ from outcomes onto antecedents of the next behavioral or 

cognitive episode are weak or inconsistent, and when the number of relevant constructs is 

limited, the two methods may provide useful data that allow us to estimate processes or event 

histories in organizational and individual space. But, the disciplines reach their limits when 

confronting data generated by stochastic, dynamic, nonlinear processes.”  

Computational Modeling: Advancing Quantitative Research on Emergence 

 Although conventional correlational and experimental research methods are challenged 

with respect to studying emergence, computational modeling and agent-based simulation offer 

distinct theoretical and methodological advantages for direct investigation of the dynamic micro 

processes that yield emergent macrostructures. With respect to theory, computational modeling 

necessitates a formal specification of the underlying process mechanisms reflecting human 

 
6 It is of course also possible to study emergence in existing social systems. For example, one could be 
interested in understanding how environmental change (e.g., task, technology, structure, etc.) forces 
change and adaptation in existing social systems (Kozlowski et al, 1999). That is a form of emergence 
too, but it will be very difficult to characterize that emergence without knowledge of the extant process.  
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interaction that determine the nature of the emergence process. As currently constructed, most 

theories in organizational behavior are “word theories.” Paraphrasing Davis (2000, p. 218), ‘they 

are based on natural language, rich in metaphor, and lavishly nuanced,’ but lacking in sufficient 

precision for this degree of specification. Thus, integrating computational modeling / agent-

based simulation with the dominant research designs would necessitate greater theoretical 

parsimony and precision. Although some might be concerned that the richness of social 

behavior would be stripped from theoretical constructions, we think that focusing on 

fundamental process mechanisms would actually help develop more elegant, informative, and 

powerful theories. The intent is to supplement, not replace existing approaches. 

Moreover, the methodological advantages of computational modeling, which include 

temporal sensitivity, high sampling frequencies, and wide scope, make it very useful as a 

method for conducting virtual experiments designed to build and extend theory. Computational 

modeling is temporally sensitive. Time is abstract, represented by event cycles in the 

computational model. Thus, it allows any time frame (moments, days, months, and/or years) to 

be modeled that is theoretically meaningful. In addition, models can be constructed that assume 

any position in a social space. For emergence, the typical focus would be on unit members with 

no prior history, but other configurations can be modeled if they make theoretical sense and are 

of interest. Thus, one could model the effects of shocks (e.g., changes in environments, 

technology, structure, tasks, etc.) on interaction processes and the emergence of adaptive 

responses. Computational modeling allows exceptionally high sampling rates that are 

commensurate with the theoretically determined rate of change for the phenomenon of interest. 

There are no missing observations with respect to change of system states. It simulates the 

fundamental time clock for the phenomenon of interest. Finally, computational modeling can 

encompass the entire scope of theoretical variability for factors relevant to the phenomenon of 

interest; this is very difficult to achieve with conventional research designs. For example, it is 

very challenging to research team composition effects simply because it is hard to get sufficient 

representation and variance across all potentially relevant composition factors (e.g., surface and 

deep-level diversity). Consequently, they tend to be studied one at a time. Computational 

modeling would allow any number of composition factors to be modeled simultaneously.  

These advantages make computational modeling a viable research design tool for 

conducting virtual experiments. Theoretically based process mechanisms for emergence are 
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specified, parameter values are estimated from existing research, theoretically relevant 

individual (entity level) and contextual factors are specified, and then this theoretical space is 

systematically examined virtually using agent-based simulation. Novel findings provide a basis 

for theory building and extension. Of course, key propositions that are identified using virtual 

experimentation need to be verified using real world analogs (lab experimentation) or 

observation (field data). By better focusing such research, findings are likely to be more precise 

and informative. In addition, targeted empirical findings can then be used to increase the 

precision of the computational model by using observations to update parameter values and to 

add additional emergence process mechanisms to the computational model. We are not calling 

for computational modeling to replace conventional research methods. Rather, we explicate 

how together – correlational, experimental, and computational modeling research designs – can 

be used to elucidate the dynamics of emergence, and other, organizational processes. 

Recommendations  

 We recognize that one of the biggest challenges for innovation in research design is 

simply making researchers aware of the capabilities of new research methods and providing 

them with models for implementation. Those are key reasons why quantitative multilevel 

research is now a mainstream method; those issues were addressed. We have endeavored to 

address these issues in this paper by explicating the advantages of an integrated approach and 

by providing three specific exemplars. We are using the integrated approach we have described 

in our research program, and we are finding it to be highly informative (Kozlowski et al., 2012). 

We close with general recommendations to help guide other researchers who may wish to 

consider implementing the integrated, hybrid approach we have advanced. 

 Table 2 presents recommendations for studying emergent phenomena organized into 

those that are conceptual – Develop the Conceptual Foundation for Emergence – and those 

relevant to integrating computational modeling and conventional designs – Integration: Virtual 

Experimentation, Verification, and Theory Building. Within these two broad categories, we link 

the Research Program Phase to specific Recommendations for implementation. 

<Insert Table 2 about here> 

Develop the conceptual foundation. The first step is to identify or select an emergent 

phenomenon of interest. In selecting a phenomenon to study, it is important that the researcher 

is sensitive to the core conceptual foci – multilevel, process oriented, and temporally sensitive – 
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we discussed previously. These characteristics should be explicitly specified. Table 1 provides 

one potentially useful source for identifying such phenomena for study. Furthermore, the three 

exemplars we analyzed provide further theoretical specification and design ideas for research 

focused on emergence. Beyond these specific recommended targets, many more abound as a 

substantial proportion of theory in organizational behavior is multilevel, process oriented, and 

temporal. Learning, socialization, and development are possible research targets. Leadership, 

culture, and climate are targets. And, as we have noted, there is a substantial qualitative 

research foundation on which to draw. There are simply a lot of potential targets for research 

focused on emergence because it is ubiquitous in organizational behavior. In selecting potential 

targets beyond those identified in Table 1, we suggest that the interested researcher focus on 

middle range theory (Pinder & Moore, 1980) to ensure that the research target is broad enough 

to be meaningful, but sufficiently constrained so that assumptions regarding the phenomenon 

are explicit and that boundary conditions are specified. Davis et al. (2007) suggest that “simple” 

theories – those with few constructs, but with basic processes mapped – are useful targets. 

Whether the theories are simple or complex, basic process mechanisms need to be specified.  

The second step is to specify theoretical process mechanisms. The theoretical focus 

here is on the relevant elemental content – what is the “stuff” that entities are to communicate or 

exchange – and the interaction processes that describe how it is communicated or exchanged 

(Kozlowski & Klein, 2000). This specification provides the architecture for the design of agents 

and the parameters that guide their interactions. It must be sufficiently precise to be translated 

into a set of logical statements or formal mathematical representations. For example, as we 

described for the STMM example, McComb (2007) provided a detailed process model 

specification of STMM convergence which Dionne et al. (2010) then used as a basis to specify a 

computational simulation to model factors that shape STMM emergence. Similarly, for the social 

dilemma example, two specific process mechanisms – social learning and success-driven 

migration – were postulated as the underpinnings for the emergence of cooperative clusters 

(Helbing et al., 2011). For collaboration, Kuljanin (2011) specified different interaction structures 

and preferences for team cooperation. As noted previously, simple theories are likely to be 

easier to specify than complex theories. However, the key for specification is how well the 

theory – simple or complex – describes the underlying processes of interaction and exchange. 

Once the researcher has specified the focal process mechanisms, potential antecedents and 
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moderating factors need to be specified and incorporated into the computational model. We 

have listed a core set of basic research questions to guide this specification process. 

The third step is to specify the nature of the emergence process and the forms that are 

expected to manifest based on the underlying process mechanisms. Here researchers have a 

reasonable point of departure by drawing on qualitative research and referencing extant 

multilevel frameworks. Chan (1998), for example, provides a range of composition models that 

are relevant for composition forms of emergence as well as dispersion and process models. The 

Kozlowski and Klein (2000) emergence typology postulates theoretically based emergence 

processes and emergent forms across a continuum ranging from convergent composition forms 

to divergent and configural compilation forms. Morgeson and Hofmann (1999) highlight the 

structural and functional equivalence issues relevant to distinguishing composition and 

compilation forms. These three treatments are conceptually consistent, but have different 

emphases. In particular, Kozlowski and Klein (2000) emphasize that given phenomena may 

have equifinal forms of emergence. Thus, factors that account for why emergence unfolds in 

different ways under different conditions becomes an important theoretical focus. Moreover, 

they view non-linear compilation forms of emergence as more complex – and potentially more 

interesting – than the well-researched convergent forms. They provide fairly detailed 

explanations of the underlying emergence processes that can serve as a point of departure to 

guide theoretical models for specification.  

Integration: Virtual experimentation, verification, and theory building. Having developed 

the conceptual foundation that identifies the phenomenon; specifies its underlying emergence 

processes, antecedents, and moderators; and characterizes its expected forms of 

manifestation, the researcher is now equipped to integrate research designs. The first step in 

this phase is to conduct virtual experimentation. Agents are research subjects for virtual 

experimentation. The antecedent factors are targets for experimental manipulation. 

Manipulation parameter ranges can be selected to be commensurate with known or expected 

real world values. This is useful when one wishes to generalize inferences to real world targets 

(cautiously, of course, with additional steps we shall outline). Alternatively, one may examine 

theoretically relevant ranges. This is useful when one wishes to examine emergence under 

novel conditions and / or to discover novel forms of emergence. Shocks serve as potential 

“moderators” that can be manipulated or, alternatively, that serve as boundary conditions. A 
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well-mapped theoretical space (i.e., process mechanisms, antecedents, and shocks) is then 

systematically researched. This can involve considerable simulation. For example, in the study 

on collaboration discussed previously, Kuljanin (2011) simulated 1000 5-person teams 

performing 100,000 performance episodes across 216 experimental conditions that consisted of 

24 team collaboration conditions (i.e., 3 sets of preferences, 4 collaboration networks, 2 

interaction protocols) by 9 individual competency conditions (i.e., 3 sets of taskwork skills, 3 sets 

of teamwork skills). The agents do the heavy lifting and the theoretical space is fully examined.  

Just as in conventional research, observed regularities in antecedent – outcome effects 

(i.e., forms of emergence), and modification of the process by shocks, are candidates for 

inference. Novel, unusual, or unexpected outcomes for emergence prompt theory building and 

experimentation. For example, in our research on team learning and knowledge emergence 

modeled via agent-based simulation, we observed that within team variability in learning rates 

and knowledge sharing strategies were detrimental to the emergence of shared team 

knowledge. This then shaped follow up research we conducted with human teams that targeted 

the process problems observed in the agent-based teams (Kozlowski et al., 2012). 

Whether the simulation findings extend theory based on novel findings or conform to 

theoretical expectations, the next step of verifying simulation findings using correlational or 

experimental research is critical. The point of the prior step of systematically mapping the 

theoretical space is to eliminate unlikely possibilities and to focus attention on the more likely 

emergent relationships. This is where conducting conventional research to verify the findings is 

important. Having modeled an emergent phenomenon with simulation is one thing, now one has 

to demonstrate that the inferences based on virtual experimentation will hold with real social 

data. Thus, for example, we previously highlighted how Van Lange et al. (2002) conducted 

conventional experiments that supported findings from prior social dilemma simulations 

(Kollock, 1993). Designing verification studies is challenging because one is typically not going 

to have the same theoretical scope (i.e., number of factors to examine simultaneously), sample 

size and power, or high frequency of measurement in real world research as can be obtained 

with simulation. But, one does have insight from the simulation findings and that makes 

targeting research design and measurement more precise. That is, simulation findings can be 

used to target where in the emergence process transitions, particular intermediate states, or 

other “markers” of emergence occur that can be isolated for measurement and analysis.  
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As the researcher conducts human observation and / or experimentation – with a goal of 

ensuring that fundamental process mechanisms are operating – for purposes of establishing 

model fidelity and verification, the research is also collecting data that can be used for the next 

step which is to refine and extend the computational model. Essentially, if the fundamental 

process mechanisms are instantiated in the research, then the information provided by real 

world research can be used to add precision to the computational model parameter values 

which will yield closer correspondence between the model and the behavior of interest. In 

addition, sparse computational models that show good fidelity with real world data can be 

incremented in complexity and precision with the incorporation of additional process 

mechanisms. The goal is not to represent the complexity of extant theory per se. Rather, 

parsimony remains a guiding principle. The theory building and modeling effort should only be 

as complicated as is necessary to account for the emergent phenomena of interest and to 

demonstrate its fidelity with the real world. Once that is achieved, the computational model has 

the potential to be a primary experimental platform for research and exploration. 

Conclusion  

 Organizational science has advanced substantially over the last century. For most of its 

development, qualitative research has been the primary means for investigating the systemic 

character of organizations, especially emergent phenomena. As quantitative multilevel research 

begins to probe across multiple organizational levels and time to better comprehend systems, 

process dynamics, and emergence, it is increasingly clear that the traditional twin pillars of 

scientific research design – correlational and experimental methods – are limited in what they 

can reveal. We think that there is a need to enlarge the array of research design approaches 

and that a compelling case can be made for better incorporating computational modeling / and 

agent-based simulation in our methodological toolbox. With intelligent coordination between 

conventional approaches and computational modeling, a more powerful toolkit can be used by 

researchers to directly examine the dynamics of emergence. We, and others, are probing that 

frontier. We hope this paper will stimulate others to join us to advance quantitative methods in 

organizational science.  
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Table 1. Exemplar Emergent Phenomena in Teams. 
 

Emergent Team Processes and States 
 

Cognitive Perceptions and States  
 

▪ Team or unit climate (Zohar & Hofmann, 2012)  
 

▪ Team learning and knowledge acquisition (Bell, Kozlowski, & Blawath, 2012)  
 

▪ Team knowledge outcomes  
o Shared team mental models; Transactive memory (DeChurch & Mesmer-Magnus, 

2010b)  
 

 

Motivational and Affective Perceptions and States  
 

▪ Team goals (Kleingeld, van Mierlo, & Arends, 2011)  
 

▪ Team efficacy and potency (Gully, Incalcaterra, Joshi, & Beaubein, 2002)  
 

▪ Team cohesion (Gully, Devine, & Whitney, 1995)  
 

▪ Team conflict (De Dreu & Weingart, 2003; de Wit, Greer, & Jehn, 2012)  
 

 

Group Decision Making  
 

▪ Social dilemmas (Dawes, 1980; Kollock, 1998)  
 

▪ Hidden profiles (Stasser, 1999; Stasser & Titus, 1985)  
 

▪ Social decision scheme (Davis, 1996) 
 

 

Behavior and Action  
 

▪ Collaboration and interaction (Bedwell et al., 2012)  
 

▪ Action and transition (LePine et al., 2008; Marks et al., 2001)  
 

▪ Action regulation (DeShon et al., 2004) 
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Table 2. Recommendations for Investigating Emergent Phenomena. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Research Program Phase Recommendations 
 

Develop the Conceptual Foundation for Emergence 
 

Identify or select an emergent phenomenon of interest 
 
 
 

• Incorporate core conceptual foci as criteria for selection 
• Use Table 1 as a source for potential research targets 
• Extend consideration to additional phenomena beyond Table 1 
• Extend consideration to the macro level 

 
Specify theoretical process mechanisms • What are the primary micro process mechanisms that account for 

emergence for the phenomenon of interest? 
• How do patterns of emergence evolve for the phenomenon of interest? 
• What are the primary antecedents that shape the nature of the emergence 

process? 
• What kinds of shocks shape or substantially change the nature of the 

emergence process?  
 

Specify the resulting nature of emergence and the forms / 
types that should theoretically manifest based on the 
underlying process 

▪ Use theoretical models and extant frameworks as guides 
▪ Bliese et al. (2007); Chan (1998); Chen et al. (2004) – construct / 

measurement models 
▪ Kozlowski & Klein (2000) – typology of emergent phenomena 
▪ Morgeson & Hofmann (1999) – structural & functional equivalence 

 
Integration: Virtual Experimentation, Verification, and Theory Building 

 
Theory building phase:  Conduct “virtual” experiments using 
computational modeling / agent-based simulation 

• Systematically examine the theoretical space 
• Novel patterns or unusual regularities suggest candidates for theory 

building and verification  
 

Verify theoretical extensions using correlational and 
experimental research designs 
 

• Model and test new hypotheses with real world data 
• Examine “generative sufficiency” of primary process mechanisms to create 

emergent phenomena with fidelity to real world emergents 
 

Refine and extend the computational model 
 

• Enhance the precision of model parameters using real world observations 
• Add complexity – Incorporate additional mechanisms 
 

Advance organizational science:  Iterate the process of virtual 
experimentation, theory building, and verification 
 

• Continue this process utilizing all three research disciplines: Computational 
modeling, correlational, and experimental research 
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Figure 1. Heuristic Illustrating Core Conceptual Foci of Emergence. 
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Figure 2. A Meta-Theoretical Framework for the Empirical Investigation of Emergence in Organizational Science. 
 

 

Quadrant 1

Retrospective Interviews; Case Studies

• Orlikowski (2002) – five everyday practices of 

organizational members affect the emergence of 

“organizational knowing”

• Robertson & Swan (2003) – the emergence of a 

strong organizational culture arise from ambiguous 

organizational practices that promote autonomy

• Corley & Gioia (2004) – the emergence of an 

organizational identity change following a corporate 

spin-off

Quadrant 2

Ethnography; Participant Observation; Action Research

• Roy (1958) – emergence of a group’s social structure is 

reinforced or changed by informal interactions

• Kuhn & Corman (2003) – emergence of knowledge 

structures during an organizational change

• Barrett, Oborn, Orlikowski, & Yates (2012) – changes in 

boundary relations among 3 occupational groups 

emerged over time as new technology was implemented  

Quadrant 3

Multilevel Emergent Constructs / Relations

• Lewis (2003) – questionnaire measure of transactive

memory (TM) exhibited high within-group agreement; 

aggregated TM measure related to expertise 

agreement, functional communications, and team 

performance (Field Study 3)

• Marks, Zaccaro, & Mathieu (2000) –leader briefings 

and team-interaction training predicted team mental 

model structural similarity and accuracy, which 

positively influenced team communication and 

performance (Experiment)

• Sampson (2003) – aggregate social characteristics in 

communities are associated with individual health 

problems beyond individual risk factors

Quadrant 4

Computation Modeling / Agent-Based Simulation

• Dionne, Sayama, Hao, & Bush (2010) – leadership 

effects on the emergence of team mental models

• Helbing, Yu, & Rauhut (2011) – social learning and social 

environmental effects on the emergence of cooperative 

behavior

• Kuljanin (2012) – team interaction patterns and individual 

preferences for teamwork have effects on the emergence 

of team collaboration, which has effects on team 

performance
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Direct Investigation of Emergence
[Prospective; Emergence Observed]
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