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Abstract 

 Team cognition has been identified as a critical component of team performance and decision-making. 

However, theory and research in this domain continues to remain largely static; articulation and examination of the 

dynamic processes through which collectively held knowledge emerges from the individual- to the team-level is 

lacking. To address this gap, we advance and systematically evaluate a process-oriented theory of team knowledge 

emergence. First, we summarize the core concepts and dynamic mechanisms that underlie team knowledge-building 

and represent our theory of team knowledge emergence (Step 1). We then translate this narrative theory into a 

formal computational model that provides an explicit specification of how these core concepts and mechanisms 

interact to produce emergent team knowledge (Step 2). The computational model is next instantiated into an agent-

based simulation to explore how the key generative process mechanisms described in our theory contribute to 

improved knowledge emergence in teams (Step 3). Results from the simulations demonstrate that agent teams 

generate collectively shared knowledge more effectively when members are capable of processing information more 

efficiently and when teams follow communication strategies that promote equal rates of information sharing across 

members. Lastly, we conduct an empirical experiment with real teams participating in a collective knowledge-building 

task to verify that promoting these processes in human teams also leads to improved team knowledge emergence 

(Step 4). Discussion focuses on the implications of examining team cognition processes and dynamics as well as 

directions for future research. 
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 Since the concept of team cognition was first proposed and popularized in the organizational sciences 

(Cannon-Bowers, Salas, & Converse, 1990), an abundance of empirical research has accumulated examining its 

contribution to team effectiveness. Team cognition has been evaluated as both shared mental models (collectively 

shared mental representations of a team domain and task) as well as transactive memory systems (collectively 

distributed and organized knowledge related to team and task demands), and there is now meta-analytic evidence 

supporting the contribution of both conceptualizations to team performance (DeChurch & Mesmer-Magnus, 2010). 

There is a similarly extensive body of research demonstrating that the distribution of expertise and specialization 

among team members has a significant impact on the quality of knowledge-building and decision-making within 

teams (Mesmer-Magnus & DeChurch, 2009; Lu, Yuan, & McLeod, 2012). Despite recognition of its importance to 

team functioning, a coherent understanding of how and why team cognition develops remains incomplete. That is, 

little attention has been directed towards the dynamic processes through which knowledge is acquired, compiles, and 

manifests at the team level. Basic theory of how collectively held and actionable knowledge emerges from the 

individual to the team level is lacking. 

 Understanding how knowledge emerges from the individual to the team-level is critical to advancing 

research on team cognition. A primary objective of team cognition research is to develop insights into how the 

quantity and quality of knowledge held by teams as well as the capability to generate and disseminate information 

among team members can be improved. This goal has traditionally been pursued by examining static 

operationalizations of team knowledge and construct-to-construct relationships with antecedents measured at a 

single time-point (e.g., team ability, familiarity, task complexity) or following an intervention (e.g., cross training, crew 

resource management, etc., see Wildman et al., 2012). Although these efforts have expanded the nomological 

network of team cognition, they do not reveal the underlying process mechanisms responsible for team knowledge 

emergence. The manner by which team knowledge is created and sustained remains a “black box.” 

 A lack of theoretical and empirical attention towards unpacking this black box and revealing the processes 

responsible for team knowledge emergence is problematic for at least two reasons. First, the development and 

maintenance of knowledge at the team level inherently involves intra- and inter-member processes unfolding over 

time (Fiore, Rosen, et al., 2010; Hinsz, Tindale, & Vollrath, 1997). However, what these processes are and how they 

interact to facilitate team cognition are not well explicated. Efforts to enhance team knowledge outcomes cannot be 

as effectively achieved without better understanding what individuals do and how they work together to generate 

collectively held knowledge. Second, ignoring the process of team knowledge emergence limits inferences about why 
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teams may be more or less successful at achieving desired levels of team cognition. Focusing on construct-to-

construct relationships between antecedents and team knowledge outcomes can elucidate conditions that facilitate or 

attenuate the development of collective knowledge (i.e., inputs → outcome). However, such research does not 

provide insight into how or why these conditions lead to improved knowledge outcomes. Systematically pursuing 

these answers necessitates directive theory on team knowledge-building processes that indicate how key events, 

actions, etc. lead to individual- and team-level knowledge outcomes (i.e., process → outcome). Unfortunately, the 

approaches to theory building (e.g., “box-and-arrow” models of construct-to-construct relationships) and theory 

testing (e.g., cross-sectional, self-report-based research) most commonly used in the organizational sciences do not 

permit the precision and transparency needed to specify how and why team processes shape important team 

outcomes (Cronin, Weingart,& Todorova, 2011; Kozlowski & Chao, 2012b; Lord, Dinh, & Hoffman, 2015). For 

example, a study examining the relationship between team composition and team knowledge outcomes may be able 

to infer that “teams with characteristic X tend to have poorer team knowledge outcomes.” However, a study that 

explicitly focuses on the processes of team knowledge-building would be able to infer that “teams with characteristic 

X have poorer knowledge outcomes because they have difficulty doing _________.” The latter provides a more 

precise account of the phenomenon as well as a better understanding of how and why team cognition is shaped—a 

critical and valuable contribution in this research domain (Mohammed, Tesler, & Hamilton, 2012). 

 To begin addressing these gaps and unpacking the black box of team cognition, we advance and test a 

process-oriented theory of team knowledge emergence that elaborates the core concepts and mechanisms through 

which team cognition develops. Developing process-oriented theory requires an explicit account of how key 

cognitive, affective, and/or behavioral activities interact to produce and sustain an emergent construct. To guide the 

development and evaluation of our theory, we advance a four-step framework distilled from recommended practices 

for investigating emergent phenomena (Kozlowski, Chao, Grand, Braun, & Kuljanin, 2013). Figure 1 provides a visual 

summary of the framework and also serves as the organizing structure for the paper. Step 1 of this protocol involves 

constructing a process-level account of an emergent phenomenon—that is, a narrative theory of what individuals do, 

think, feel, etc. that gives rise to a higher-level outcome. For our theory of team knowledge emergence, this consists 

of identifying a set of core constructs and process mechanisms involved in team knowledge-building and how these 

elements dynamically interact to produce collective knowledge over time. Step 2 entails translating the theoretical 

narrative into a formal computational model that specifies the coherence and logic of the core theoretical 

mechanisms and their interactions (Law & Kelton, 1991; Taber & Timpone, 1996; Vancouver & Weinhardt, 2012). 
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With respect to our theory, we translate our narrative account of knowledge emergence within teams into a formal 

computational model of the processes carried out by individuals to generate collective knowledge. In Step 3, the 

computational model is instantiated into a computer simulation to explore the theoretical space and generate 

propositions, insights, and/or prescriptions related to the emergent phenomenon (Harrison, Lin, Carroll, Carley, 

2007). We enact this step using agent-based simulation (ABS) to advance propositions about how and why the core 

processes of knowledge emergence proposed in our theory influence knowledge outcomes in teams. Step 4 involves 

evaluating the fidelity between patterns observed in simulated and human data and exploring the utility of predictions 

gleaned from our simulation for influencing outcomes in real teams. We carry out this step by empirically investigating 

whether efforts to influence the generative process mechanisms identified in our theory and explored in the ABS 

improve knowledge emergence for real teams participating in a knowledge-building task. Lastly, results from the 

theory evaluation can be used to suggest directions for future research, model revision, and implications for practice. 

Our paper concludes with a discussion of the theory’s potential to explain knowledge emergence in teams with 

distributed expertise, its utility for organizing existing work on team cognition, and its usefulness for guiding research. 

Overall, this cyclical four-step procedure embodies principles of scientific inquiry by both developing (Steps 1 and 2) 

and then systematically evaluating (Steps 3 and 4) process-oriented theory to advance research and practice. 

 In sum, there is significant need to unpack the “black box” of team cognition by advancing theory on the 

process of knowledge emergence within teams. The present research addresses this gap by (1) identifying and 

describing core concepts and process mechanisms of team knowledge emergence; (2) constructing a computational 

model to formally describe the relations among these core knowledge processes; (3) instantiating the computational 

model into a computer simulation to generate insights and prescriptions for enhancing team knowledge emergence; 

and (4) evaluating these propositions in real teams engaged in knowledge-building. 

Theories of Emergence 

 Before elaborating our theory of team knowledge emergence, it is important to clarify the meaning of 

emergence and to identify key considerations for developing theories of emergent phenomena. Multilevel theory 

(Kozlowski & Klein, 2000) defines emergence as a dynamic process by which the interactions of elements at a lower 

level of analysis (e.g., learning and sharing information by individuals) give rise to constructs at higher levels. By 

contrast, an emergent construct is an outcome or pattern of outcomes generated and sustained by the interactions of 

lower-level elements over time (e.g., team knowledge). A theory of emergence therefore defines the bottom-up 

mechanisms and interactions that give rise to emergent constructs at higher system levels (Kozlowski et al., 2013). 
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 Developing and testing theories of emergence requires an alternative conceptual approach to conventional 

theory-building paradigms employed in much of organizational research. Contemporary theory development in 

organizational research most often focuses on elaborating the correlational relationship among constructs (e.g., 

construct A positively relates to construct B; construct C mediates the relationship between constructs D and E). In 

contrast, the objective of a theory of emergence is to describe the nature of lower-level process mechanisms in a 

system/collective (e.g., if person 1 performs behavior A, then person 2 performs behavior B; if event X occurs, person 

1 experiences outcome Y). Specifying a theory of emergence thus requires identifying, operationalizing, and justifying 

both the core concepts involved in an emergent phenomena as well as the “rules” or process mechanisms that 

describe what, when, and how lower-level entities think, behave, and/or react to environmental stimuli (events, other 

members, tasks, etc.). By meeting this demand, theories of emergence explicitly recognize the dynamic processes 

(e.g., feedback/feedforward mechanisms, simultaneous activation, inhibition/excitation, etc.) that generate and 

sustain emergent and organizationally relevant constructs. An important consequence is that theories of emergence 

permit multiple “pathways” through which an emergent construct may unfold. In doing so, they embrace principles of 

equifinality characteristic of open systems such as teams and organizations (i.e., many ways to reach the same end 

state, Cronin et al., 2011; Katz & Kahn, 1978; von Bertalanffy, 1950). 

 These considerations provide critical context for defining team knowledge emergence. Whereas team 

knowledge is an emergent construct, team knowledge emergence is a dynamic process. A theory of how and why 

knowledge emerges in teams must describe the individual-level concepts relevant to knowledge development as well 

as the manner by which those concepts interact to generate knowledge at the team-level. The purpose of such 

theory is to provide an explicit account of how key process mechanisms contribute to team cognition (process → 

outcome). In turn, this theoretical specification can provide a more informed conceptual framework through which 

interventions to enhance the level and quality of collectively held knowledge in a team can be pursued (input → 

process). Furthermore, precision at the process-level facilitates the ability to incorporate, revise, and extend theory 

on team cognition as future research continues to explore how teams generate and sustain knowledge under 

different conditions, constraints, and environments. 

 STEP 1: PROCESS-ORIENTED THEORY OF KNOWLEDGE EMERGENCE IN TEAMS 

 We propose that knowledge emergence in teams is primarily driven by two fundamental activities of 

individuals—learning and sharing. Learning is a ubiquitous feature of virtually all theories of individual and team 

cognition and characterizes how individuals extract information from their environment. Comparatively, sharing 
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reflects the foundational aspects of communication and interaction through which information is disseminated across 

members (Fiore, Rosen, et al., 2010; Hinsz et al., 1997; Stasser & Titus, 1985). To construct a process-level account 

of team knowledge emergence, we identify a core set of process mechanisms to represent learning and sharing 

within teams. The focus of our theory is on teams with members possessing distributed and specialized expertise 

who must actively acquire information from the environment and each other in order to reach a fully shared and 

agreed upon understanding of a problem space. Such teams are common in many organizations (e.g., top 

management teams, multi-disciplinary decision-making teams, interprofessional advisory committees, joint task 

forces, etc.). Furthermore, their capacity to efficiently and effectively develop actionable and collectively held 

knowledge is a crucial component of performance at multiple organizational levels (Fiore, Rosen, et al., 2010; Fiore, 

Smith-Jentsh, et al., 2010; Mesmer-Magnus & DeChurch, 2009). 

 Although it is possible to include other concepts and mechanisms in this process (e.g., motivation, affect, 

conflict, etc.), we adhere to tenets of complexity science and conceptual parsimony that a theory of emergence 

should pose the fewest and most fundamental processes capable of representing the phenomenon (Epstein, 1999; 

Miller & Page, 2007; Reynolds, 1987). In the sections that follow, we thus explicate the most fundamental 

mechanisms of learning and sharing and how they interact over time to generate emergent team-level knowledge. 

This specification represents our process-oriented theory of team knowledge emergence and denotes how 

collectively shared knowledge arises from the behavioral and cognitive activities of individual team members. 

Core Concepts and Process Mechanisms Involved in Learning 

 A small number of fundamental mechanisms are typically implicated in the process of knowledge acquisition 

across a wide range of learning theories. These concepts include attending to information in the environment; 

evaluating and representing information; storing information for later use; and interpreting how newly acquired 

information fits with previously acquired information. We incorporate these core process mechanisms into our theory 

as Data Selection, Encoding, Decoding, and Integration. 

 Data Selection. The perception of, and attention to, environmental stimuli represents the first stage of 

information processing in most models of human cognition and knowledge development (e.g., Anderson et al., 2004; 

Love, Medin, & Gureckis, 2004; Meyer & Kieras, 1997; Newell, 1990). Research in this area describes how 

individuals identify, recognize, and selectively filter meaningful “data” or stimuli from the environment to subsequently 

be processed (Broadbent, 1958; Deutsch & Deustch, 1963; Treisman, 1964). As Hinsz et al. (1997, p. 46) note, data 

selection mechanisms address the basic question “What information is the focus of attention for team members?” 



Team Knowledge Emergence      8 

 Distilling the large literature on processes related to data selection reveals three mechanisms relevant to a 

theory of team knowledge emergence. First, in the absence of any external influence, individuals should be equally 

attentive—and therefore likely to direct learning efforts—towards any given piece of information that is accessible and 

relevant to their area of expertise (e.g., Deutsch & Deutsch, 1963). Second, the presence of goal hierarchies and 

information-seeking strategies developed as a result of expertise and experience should increase the likelihood that 

individuals will select information to learn that contributes to a more coherent understanding of the task environment 

(Duncan & Humphreys, 1989; Soto, Heinke, Humphreys, & Blanco, 2005; Wickens, 1992). That is, once a given 

piece of information has been learned, the presence of that information should prompt individuals to attend to other 

information that builds upon that existing knowledge rather than focusing on less immediately relevant information 

(e.g., Moores, Laiti, & Chelazzi, 2003). Finally, in groups with distributed expertise, individuals can influence the data 

selection processes of other team members by focusing attention towards new or important sources of information 

(Stasser & Titus, 1985, 1987; Dionne, Sayama, Hao, & Bush, 2010). 

 Encoding. Once information is brought into active awareness, individuals can attempt to internalize that 

data. Encoding encompasses how individuals transform external stimuli, events, or information into representations 

that are then stored in memory (Baddeley, Eysenck, & Anderson, 2009). In this sense, encoding describes how 

individuals translate something they perceive in their environment into something they know and remember. The 

encoding procedure captured in our theory of team knowledge emergence reflects the notion of “learning-from-self” 

that takes place when individuals in a team learn information available to them that requires no coordination with 

other team members. In groups with distributed expertise, this conceptualization mirrors members’ efforts to learn 

information within their unique domain of specialization (Fiore, Smith-Jentsch, et al., 2010). For example, learning-

from-self is exemplified by a physician in an emergency medical team reading an EKG test to acquire information 

about a patient’s cardiac health, a researcher in a multidisciplinary research team evaluating findings from empirical 

articles in her area of specialty, or a sonar technician on a submarine assessing information about potential 

underwater threats using his listening equipment. In all cases, the team member encodes information that he or she 

had access to, unique expertise to interpret, and can learn without input from other team members. 

 Our theory of team knowledge emergence does not distinguish among different encoding processes for 

separate sources of informational stimuli (e.g., visual, acoustic, semantic, etc.; Baddeley et al., 2009; Damb et al., 

1995). Rather, we instantiate a simplifying assumption that encoding happens for an entire informational stimulus 

(e.g., person learns all aspects of a piece of information to a certain level of completeness) rather than for specific 
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features of information (e.g., person encodes visual attributes of information, but not semantic, etc.). Validation 

evidence from previous models related to information processing that employ similarly simplified assumptions 

indicate that this conceptualization is reasonably accurate at capturing outcomes from empirical data (Hintzman, 

1984; Dougherty, Gettys, & Ogden, 1999). Encoding in our theory of team knowledge emergence therefore embodies 

the notion that individuals learn an entire “unit” of information more or less completely over time. 

 Decoding. Individuals engage in encoding/learning-from-self by interfacing with information sources they 

can access directly. In team contexts with distributed expertise though, individuals also learn information from other 

team members that would otherwise be unavailable due to lack of accessibility or expertise. In our theory of team 

knowledge emergence, decoding characterizes “learning-from-others” in which members acquire and interpret 

information shared with them by their teammates. We posit that decoding is subject to additional demands that cause 

it to occur more slowly relative to encoding. This interpretation differs slightly from extant treatments of team 

knowledge-building and therefore represents a unique contribution of our theoretical model. 

 A number of conceptual and empirical sources support the decision to consider a separate and more 

effortful decoding mechanism. First, the relative inefficiency of decoding compared to encoding is consistent with 

early research in educational psychology which found that students who learned material only by reading (i.e., 

encoding/learning-from-self) performed better on related knowledge tests than learners who were provided the same 

material only through lecture (i.e., decoding/learning-from-others, Corey, 1934; Spencer, 1941; Russell, 1928). 

Second, the social environment in which team knowledge-building occurs influences information processing. For 

instance, teams may reinforce certain types of heuristic reasoning that impact how a given member perceives and 

interprets shared information (Hinsz et al., 1997). Similarly, members may possess different interpretations of task 

demands and goals (Klimoski & Mohammed, 1994; Mathieu, Heffner, Goodwin, Salas, & Cannon-Bowers, 2000; 

Mohammed & Dumville, 2001) that influence how, when, and why individuals internalize certain types of information. 

Consequently, learning-from-others is likely to involve additional processing to filter ambiguous and/or unfamiliar 

sources of information. Third, Fiore and colleagues’ macrocognitive framework (Fiore, Rosen, et al. 2010; Fiore, 

Smith-Jentsch, et al., 2010) posits that distinctive individual vs. team knowledge-building processes exist that place 

different demands on learning. Notably, these authors suggest that team knowledge-building processes (e.g., 

exchanging information, evaluating information, etc.) which operate on information external to the receiving member 

is subject to influences both within and beyond the “head” of a single member. Lastly, research on semiotic models of 

communication notes that information which is transmitted by others is perceived as noisier and requires additional 
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cognitive energies to translate and interpret (Hall, 1973). In sum, although encoding and decoding processes are 

functionally similar mechanisms, they are subject to different constraints and are reflected as such in our theory.  

 Integration. Individuals do more when learning than simply accumulate unrelated facts; they categorize and 

organize these concepts into coherent schemas of interrelated information (Love et al., 2004; Medin & Schaffer, 

1978; Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976). The formation of associative links among internalized 

information thus represents a qualitatively different and more sophisticated understanding of a task environment. In 

our theory of team knowledge emergence, this concept is captured through an integration procedure in which 

individuals consult their existing knowledge to identify whether any newly acquired information shares relationships or 

dependencies with previously internalized information.  

 Similar to encoding and decoding processes, we focus on the functional role played by integration in the 

development of team knowledge. That is, rather than model specifically how individuals integrate information (i.e., 

how new informational categories are formed, how associative/similarity judgments are reconciled, etc., Nosofsky, 

1984, 1987; Nosofsky & Zaki, 1998; Love et al., 2004), we simply acknowledge that individuals integrate information 

by learning relational ties and note this process could be better or worse across individuals, situations, stimuli, etc. As 

exemplified by recent work examining the formation of team mental models, various characteristics and processes at 

the group level also have the potential to impact the integration of information by individuals. For example, Kennedy 

and McComb (2014) demonstrated that the type of information shared and the temporal patterning by which 

information is communicated influences the extent to which team members integrate their understanding of the task 

environment into a shared representation. Similarly, Dionne et al.’s (2010) simulations of mental model formation 

describe how the distribution of expertise across team members, the level of confidence members place in one 

another’s expertise, members’ sensitivity to social influence, and leadership structures influence the likelihood of 

mental model convergence. A critical implication of this research is that the characteristics and behaviors of 

individuals within a team can impact the ability for members to integrate information into a coherent structure that is 

then collectively shared with other members (Kozlowski et al., 2013). 

Core Concepts and Process Mechanisms Involved in Sharing 

 As individuals in a team acquire knowledge and increase their personal understanding of a given domain, 

the team’s aggregate knowledge also grows. However, individuals are less likely to directly benefit from increases in 

the team’s knowledge pool unless members make efforts to share and distribute uniquely held knowledge to others 

within the team. A critical step in the development of team knowledge is thus the transformation of internalized 
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knowledge that has been acquired and synthesized by an individual team member into what Fiore, Rosen et al. 

(2010) characterize as externalized knowledge that is collectively held, shared, and agreed upon by multiple team 

members. We distill the processes involved in sharing information within a team to generate externalized team 

knowledge into four primary mechanisms: electing to speak and share information with others; choosing what 

information to share with others; communicating information to others; and confirming that shared information has 

been received and understood. These core concepts and mechanisms are incorporated into our theory as Member 

Selection, Retrieval, Sharing, and Acknowledgment, respectively.  

 Member selection. In team knowledge-building contexts without a formal hierarchy or structure for 

determining who has the “floor” (e.g., leaderless groups, multidisciplinary project teams, etc.), members are free to 

share information with others when they wish. However, research examining patterns of group discussion and 

problem-solving find that team members do not contribute to conversations at equal rates; rather, relatively stable 

patterns of engagement emerge which vary systematically across individuals (e.g., Parker, 1988; Stephan & Mishler, 

1952). We incorporate this individual difference as a member selection mechanism that characterizes team 

members’ likelihood of speaking at any given point in time. In this sense, member selection does not characterize an 

explicit decision or democratic choice made by the team to choose who speaks; instead, it simply captures the notion 

that individuals exhibit differential probabilities of speaking within a team. 

 Communication between group members reflects the most prominent mechanism through which information 

is disseminated in teams. Consequently, “who” speaks and “why” they speak represents an important conceptual 

distinction for team knowledge emergence. To guide this decision, we note that speaking dynamics in groups are 

typically bounded by the nature of a team’s environment, composition, and goals. For example, committee and 

production teams are often comprised of members with largely similar expertise (Sundstrom, De Meuse, & Futrell, 

1990); in such teams, sharing information is often used to express influence or shape preferences for particular 

decisions/products (Stasser, 1988; Stasser & Taylor, 1991). In contrast, individuals in action and project teams 

commonly possess distributed and specialized expertise and must rely on one another to relay task-critical 

information that no one else in the team could reliably access or interpret. Communicating information in these 

contexts thus directly contributes to the development of collective understanding (Dionne et al., 2010). This latter 

characterization is consistent with the task and team environment in many modern organizational teams in which 

knowledge-building is critical (e.g., Fiore, Rosen et al., 2010; Wildman et al., 2012), but it reflects an operational 

boundary condition for the conceptualization of member communication in our theory of team knowledge emergence. 
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More specifically, we focus on member selection/communication patterns in environments where individuals are 

aware that team members are not substitutable by other members on the team (i.e., expertise is distributed and 

specialized) and therefore communicate primarily to transmit information rather than exert influence. 

 Retrieval. Along with the encoding and storing of information, the manner by which information is accessed 

once it has been learned ranks among the most fundamental functions of cognition and memory (Baddeley, 2009). 

Various characterizations of this process exist, though common to all accounts is the assumption that information 

retrieval involves identifying a piece of information from memory and bringing it into active awareness (cf., Anderson 

et al., 2004; Dougherty et al., 1999; Hintzman, 1984). In our theory of team knowledge emergence, retrieval 

determines what piece(s) of information members select to share with other team members. 

 There are many potential factors that might influence whether any particular piece of learned information is 

retrieved by an individual to be shared (e.g., recency, saliency, validity, etc., Anderson & Schooler, 1991). However, 

we adopt two simplifying assumptions related to retrieval in our theory of team knowledge emergence. First, it is 

assumed that individuals in knowledge-building teams with distributed expertise strive to reach a collectively shared 

and agreed upon understanding of all relevant knowledge in the team task environment (McComb, 2007). The 

primary consequence of this intention is that members are equally likely to share any useful knowledge they have 

acquired and are therefore also equally likely to retrieve any relevant knowledge to share that is available. Second, 

the acquisition of integrated knowledge during learning enhances the quality of information that can be retrieved and 

subsequently shared. A hallmark of expertise development is the transformation of disparate and seemingly 

unrelated information into highly integrated mental schemata (e.g., Chase & Simon, 1973; Hunt, 1994). Of 

significance to our theory of team knowledge emergence, individuals who possess more integrated schemata are 

capable of recalling both a higher quantity as well as more coherent representations of information during retrieval 

(Anderson, 1993; Lipshitz, Levy, & Orchen, 2006). Taken together then, the retrieval mechanisms incorporated in our 

theory are consistent with team knowledge-building activities directed towards developing a comprehensive and 

integrative understanding of a problem domain among all team members. 

Sharing. During collaborative knowledge-building, direct communication between members represents one 

of the few readily observable knowledge-building behaviors performed by individuals. The act of transmitting 

information known by a team member to one or more team members constitutes sharing. For purposes of 

characterizing what and how individuals share information in our theory, we recognize two important distinctions. 

First, sharing represents any overt act intended to disseminate information to others. Sharing may thus occur through 
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different mediums which vary along many characteristics, such as richness or temporal synchronicity (e.g., real-

time/synchronous communication through face-to-face conversation versus delayed/asynchronous communication 

through e-mail; Daft & Lengel, 1986). Variation in the channels through which information sharing occur within a team 

could impact a variety of processes related to team knowledge emergence, including data selection (what gets 

attended to), member selection (who communicates), and decoding (how readily shared information is internalized). 

Precisely elaborating how differences in sharing mediums correspond to differences in these mechanisms lies 

beyond the scope of our theoretical specification. Nevertheless, such considerations exemplify the potential which 

theories of emergence hold for exploring complex and highly interdependent relations (Davis, Eisenhardt, & 

Bingham, 2007; Harrison et al., 2007). 

Second, the quality of information which gets shared differs in teams whose members possess 

heterogeneous versus homogenous expertise (Hinsz et al., 1997). To the extent that team members rely on one 

another’s unique proficiencies to provide and reliably interpret information from the task environment, communicating 

basic, decontextualized facts is often inefficient and unproductive (e.g., “That helicopter won’t work well because it’s 

a Bell UH-1 Iroquois”). Instead, teams with distributed expertise must often share integrated knowledge that 

facilitates understanding by members who do not possess the background knowledge to otherwise do so (e.g., 

“Based on the weather conditions, this helicopter will need to refuel twice before it can reach the target,” cf., Fiore, 

Smith-Jentsch, et al., 2010; Hollenbeck, Ilgen, Sego, Hedlund, Major & Phillips, 1995). This distinction is incorporated 

in our theory of team knowledge emergence as a preference for team members to retrieve and communicate 

integrated knowledge rather than disparate facts during sharing attempts. 

Acknowledgement. The act of sharing information within teams provides the means by which individuals 

can impact and contribute to one another’s knowledge about a given domain. However, teams which engage only in 

one-way communication or do not provide feedback that information was received often fail to develop a shared 

understanding of the environment (Salas, Sims, & Burke, 2005). The final critical process in the emergence of team 

knowledge thus involves members’ acknowledgment of receiving and internalizing information shared with them by 

other members. This mechanism facilitates team members’ understanding of “who knows what” (e.g., transactive 

memory, Wegner, 1987) as well as recognition of what information has yet to be addressed (e.g., shared mental 

models, shared situational awareness, Klimoski & Mohammed, 1994; Salas, Prince, Baker, & Shrestha, 1995). 

 Previous descriptions of team information exchange have conceptualized acknowledgement processes in 

different ways. For example, Fiore and colleagues’ characterize acknowledgement as the creation of cognitive 
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artifacts (e.g., reminders, notes, tables, etc.) that serve as a tangible externalization of acquired information (Fiore, 

Rosen, et al., 2010; Fiore, Smith-Jentsch, 2010). Alternatively, Crew Resource Management (cf., Kanki, Helmreich, & 

Anca, 2010) and other more general group information processing models (e.g., Hinsz et al., 1997) treat 

acknowledgement akin to confirmatory feedback and closed-loop communication. Our theory of team knowledge 

emergence integrates both these conceptualizations. More specifically, we posit that acknowledgement only occurs 

after a given piece of information has been fully decoded; in this respect, it reflects closed-loop communication that 

an individual has internalized information received from another team member. However, the act of 

acknowledgement also generates new externalized knowledge among team members who have also internalized 

that information. This treatment is consistent with creating a cognitive artifact that can only be produced after at least 

two members have exchanged information. This specification also presumes that individuals are capable of keeping 

track of what knowledge has been received and internalized by other members. Acknowledgement thus captures the 

inter-member communication exchanges between members that signal information shared by one individual has 

been received, comprehended, and taken into account by other members of the team. 

Process-Oriented Theory of Knowledge Emergence in Teams 

 Having elaborated the core concepts and mechanisms of team knowledge emergence, the manner by which 

these processes interact dynamically to drive team knowledge-building can now be specified. Figure 2 depicts our 

theoretical process model of knowledge emergence in teams. The left and right panels distinguish between learning 

and sharing processes (respectively). The double-line horizontally bisecting the panels differentiates mechanisms 

and emergent outcomes at the individual (bottom of panel) and team (top of panel) levels. The solid arrows linking 

team knowledge concepts trace the process pathways associated primarily with learning activities, whereas the 

dotted arrows correspond with processes that occur during sharing. Lastly, the white box labeled Emergent Team 

Knowledge depicts how team knowledge outcomes can be operationalized as they develop over time and level. 

 Learning. Individuals engage in learning by first identifying and directing attention towards information that 

is available and relevant to their task environment (Data Selection). Once a piece of information has become the 

focus of attention, individuals can attempt to internalize it into privately held knowledge (Encode). As members attend 

to and continue encoding more information, relational associations among pieces of learned information can be 

formed that reflect deeper knowledge of the task environment (Integration). Note that throughout these activities, 

individuals do not benefit from the learning carried out by other team members; that is, learning occurs independently 

across members. However, as individuals increase their personal level of internalized knowledge, the team’s pooled 
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knowledge as well as the manner by which that knowledge is distributed across members (i.e., proportion of 

information known by one or more persons) changes. Thus, learning processes in team knowledge-building contexts 

are conceptualized as repeated cycles of attending to, encoding, and developing an integrative understanding of 

knowledge that is performed in parallel by multiple team members. The result of this process is the generation of 

internalized knowledge held privately by members within a team. 

 Sharing. Sharing processes are initiated when an individual in the team elects to communicate with other 

members to disseminate information (Member Selection). In doing so, the individual selects information that has 

been internalized during learning (Retrieval). Members on teams with distributed expertise rely on the specialization 

of others to translate decontextualized information into more readily interpretable knowledge; consequently, members 

prioritize communicating integrated internalized knowledge to others on the team (Share). This information exchange 

attracts attention from receivers of the shared information (Data Selection) and prompts new efforts by these 

members to internalize the communicated knowledge (Decode). However, learning-from-others is a more cognitively 

demanding process compared to learning-from-self as a member’s ability to attend to information shared by another 

teammate is restricted by both task specialization and expertise barriers (i.e., only certain members can reliably 

access or interpret information due to differences in role, training, location, background, etc.). As such, members may 

need to engage in multiple communications before shared information can be adequately learned and transformed 

into internalized knowledge by the receiving individual. Once a piece of information has been received and fully 

learned, the receiving team member(s) can signal that they have internalized the shared knowledge (Acknowledge). 

The explicit recognition that shared knowledge has been acquired marks the transition from privately held to 

publically known and actionable knowledge within a team. Sharing processes thus involve members in a team 

shifting dynamically between communicating, receiving/interpreting, and acknowledging information. The result is 

emergence of externalized knowledge held collectively across multiple team members. 

 Emergent team knowledge. The above characterization presents members’ engagement in learning and 

sharing activities as a process of knowledge emergence in teams. However, it is also important to conceptualize 

team knowledge as an emergent construct which accumulates and can be quantified. To this end, we draw from 

Fiore, Rosen et al.’s (2010) macrocognitive framework and Kozlowski and Chao’s (2012a) team knowledge typology 

to operationalize emergent team knowledge outcomes. We posit that a knowledge pool can be defined for any given 

task environment which consists of all relevant information within that environment. A piece of information from the 

knowledge pool can then be characterized by the degree to which it has been learned by one or more members on 
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the team (degree of overlap) and whether that information is held privately or is acknowledged collectively 

(internalized vs. externalized). Using this framework, the emergence of team knowledge as a construct can be 

quantified as the proportion of and rates of change in knowledge distribution within a team as information transitions 

from internalized to externalized through learning and sharing processes (Kozlowski & Chao, 2012a). An example of 

this conceptualization is presented in the circular diagram labeled Knowledge Pool at the top of Figure 2 and 

explained in greater detail in the accompanying note.  

STEP 2: COMPUTATIONAL MODEL OF KNOWLEDGE EMERGENCE IN TEAMS 

 Having elaborated a narrative process theory of knowledge emergence in teams, we next translate these 

notional mechanisms into a computational model (Kozlowski et al., 2013). Developing theory through the use of 

computational modeling techniques has been described as holding great potential, yet they are rarely utilized in the 

organizational sciences (Ilgen & Hulin, 2000). A computational model is “a precise formulation of the processes 

through which the values of variables change over time based on theoretical reasoning” (Harrison et al., 2007, p. 

1232). More colloquially, a computational model is a formal declaration of what, how, and when events or actions 

happen. The formalism of a computational model involves specifying basic algorithms (e.g., if X, then Y) and/or 

mathematical equations to provide a transparent account for the proposed rules characterizing a dynamic system 

(Law & Kelton, 1991; Miller & Page 2007). The advantage of translating a narrative theory of process into a 

computational model of process is the opportunity to evaluate the logic, consistency, and sufficiency of a theory’s 

core concepts and mechanisms (Epstein, 1999; Taber & Timpone, 1996). Computational modeling is thus particularly 

useful for investigating complex phenomena that involve multiple elements interacting over time to yield emergent 

outcomes (Kozlowski et al., 2013; Vancouver, Tamanini, & Yoder, 2010; Vancouver & Weinhardt, 2012). 

 Translating our theory of team knowledge emergence into a computational model entails specifying (a) a set 

of procedural rules dictating how, what, and when core learning and sharing process mechanisms are carried out by 

individuals in a team, and (b) how these processes lead to changes in internalized and externalized knowledge over 

time. The foundational architecture for these mechanisms is provided by the narrative process theory described in 

Step 1 and visualized in Figure 2. The critical development in Step 2 is provision of a complete and transparent 

elaboration of the proposed mechanics (e.g., How is data selected during learning? What knowledge is retrieved 

during sharing?) and temporal dynamics (e.g., When does internalized knowledge change? When do individuals shift 

between learning and sharing?) associated with the core learning and sharing mechanisms described in our theory. 

Table A1 in Appendix A fully summarizes the computational model used to operationalize our theory of team 
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knowledge emergence. This procedural algorithm provides a representation of how and when the core learning and 

sharing processes proposed in our theoretical framework are enacted by individuals over time. In other words, it 

formally describes the “process engine” that constitutes team knowledge emergence in our theory. Notably, this 

model affords the opportunity to systematically explore the logic of our process theory as well as examine how and 

where variability in its core mechanisms may influence patterns of individual and team knowledge emergence. 

STEP 3: VIRTUAL EXPERIMENTATION AND KNOWLEDGE EMERGENCE IN SIMULATED TEAMS 

 Steps 1 and 2 focused on developing a formal, process-oriented theory of knowledge emergence in teams; 

in Step 3, we begin to evaluate the theory and examine its utility to generate useful insights into the dynamics of team 

cognition through virtual experimentation and simulation. Virtual experimentation and simulation involves translating a 

computational model into computer code that is then systematically manipulated (e.g., varying construct values, 

relational functions, etc.) to explore how dynamic events unfold in the theoretical space (cf., Carley, 2001; Vancouver 

& Weinhardt, 2012). There are many simulation approaches that could be used to instantiate computational models 

into computer code (see Davis et al., 2007, Harrison et al., 2007). We utilize agent-based simulation (ABS) to 

represent the processes of team knowledge emergence. ABS is useful for modeling phenomena in which multiple 

individuals (i.e., agents) situated in a social system influence one another through their interactions. Agents in an 

ABS abide by simple rules, functions, and if-then statements that specify how, what, and when to engage in particular 

activities. Emergent constructs (e.g., individual and team knowledge) arise from agents’ repeated engagement in 

these activities over time (e.g., learning and sharing information; Epstein, 1999; Macal & North, 2010; Reynolds, 

1983). Notably, the process of lower-level interactions yielding higher-level outcomes over time is consistent with 

descriptions of emergence in multilevel theory (Kozlowski & Klein, 2000) and the nature of higher-level constructs in 

organizational systems (Cronin et al., 2010; Katz & Kahn, 1978; Morgeson & Hofmann, 1999).  

 In this step, we instantiate the underlying architecture of our process theory (Figure 2) and computational 

model (Table A1) into an ABS to investigate how changes in key generative processes identified in our process-

oriented theory of team knowledge emergence lead to different patterns of emergent team knowledge (process → 

outcomes). Virtual experimentation and simulation can serve multiple purposes in theory development (see Harrison 

et al., 2007, for a summary of uses for simulation in theory-building). We use ABS to pursue two specific objectives: 

explanation and prescription. Our first objective is to evaluate the logical coherence of our process-oriented theory by 

assessing the degree to which changes in critical learning and sharing mechanisms generate differences in 

simulated emergent team knowledge outcomes (i.e., explanation; Epstein, 1999; Taber & Timpone, 1996). This is a 
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unique advantage of virtual experimentation as it allows us to explain whether and how the dynamic learning and 

sharing processes identified in Step 1 and formally instantiated in the computational model in Step 2 contribute to 

team knowledge outcomes (processes → outcomes). Our second objective is to use the simulated results to explore 

ways in which learning and sharing processes could be shaped in real teams to improve knowledge emergence. That 

is, we extrapolate from the simulated results to posit how knowledge outcomes in teams could be enhanced (i.e., 

prescription). Together, these goals permit the development of theory- and model-derived propositions about what 

teams and individuals could do to improve knowledge outcomes and why those activities facilitate team cognition. 

 To this end, we focus our virtual experiments and simulations on encoding and decoding processes as well 

as how member selection and information sharing are carried out by individuals. These mechanisms are central to all 

narrative theories of team knowledge-building (e.g., Fiore, Rosen, et al., 2010; Hinsz et al., 1997) and are common 

targets for intervention in research and practice (Wildman et al., 2012). As such, they represent key diagnostic 

indicators of the logical consistency of our computational specification (i.e., differences in encoding/decoding and 

communication processes should manifest as differences in emergent team knowledge) while simultaneously 

revealing potential chokepoints in team knowledge emergence that could be targets for future empirical studies. To 

facilitate comparisons between the ABS and subsequent empirical study in Step 4, we characterize the manipulations 

enacted in the virtual experiments as efforts to influence the information processing skills and communication skills of 

agents. As shown by the dark shaded boxes in Figure 2, information processing skills impact the proficiency with 

which agents encode and decode information (i.e., learning), while communication skills influence which and when 

agents convey learned information to teammates (i.e., sharing).  

 In addition to evaluating these core learning and sharing process mechanisms, we also examine the impact 

that degree of specialization across agents within a team exerts on team knowledge emergence. This variable 

captures the extent to which members possess greater versus less distributed expertise and is thus a structural 

factor of the team’s environment and composition. Consistent with existing theory, degree of specialization is not 

proposed to directly influence the learning or sharing processes of individuals. Instead, it reflects an environmental 

condition within which individuals carry out learning and sharing that should influence the trajectory of team 

knowledge emergence (Lu et al., 2012; Mesmer-Magnus & DeChurch, 2009; Stasser & Titus, 1985, 1987). 
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METHODS 

Description of Agent-Based Simulation 

 Tables A1 and A2 in Appendix A list the procedural rules and assumptions (respectively) that all agents 

followed in the ABS. In brief, the goal of agents was to fully internalize and externalize all available knowledge in the 

task environment. To do so, agents cycled between phases of learning and sharing activities. Each phase lasted for 

the same period of time, and agents carried out the sequence of core processes associated with that phase (see 

Figure 2 and Table A1). Similar to real knowledge-building teams, it was possible for agents to reach a point where 

they could no longer acquire information during learning phases (i.e., agents acquired all possible knowledge that 

could be internalized without input from other agents). In this situation, the team remained in a sharing phase until 

every agent had acquired all available information. 

 The passage of time in the ABS was marked by agent actions. Each agent could perform only a single 

action per time step, after which the simulation advanced by one iteration.1 Agents’ behaviors were organized by 

phases of activity that determined what actions they could perform; actions in the learning phase included either 

encoding or integrating knowledge, whereas sharing phase actions included either communicating or decoding 

shared knowledge. Agents cycled through each phase of activity together to acquire knowledge. No limit was placed 

on the amount of time agents had to acquire the knowledge pool, and thus every agent eventually acquired all 

knowledge in the task environment. This specification was purposefully intended to reflect an “ideal” world in which 

simulated teams performed under no time pressure, were temporally synced, and perfectly learned and shared 

information (e.g., agents did not forget learned information, always heard one another, etc.). If the goal of the ABS 

was to replicate knowledge emergence patterns from existing data, alternative parameterizations or mechanisms 

would likely be necessary to represent “imperfections” in agent learning and sharing behaviors. However, removing 

these considerations and modeling a “simpler” world maintains model parsimony and is particularly valuable when 

the goal of research is to evaluate the logical coherence of new theory and explore how emergent outcomes arise in 

response to systematic variations in key variables and boundary conditions (Harrison et al., 2007; Epstein, 1999). 

Description of Virtual Experiment 

 The virtual experiment consisted of a 3 (information processing skill) x 3 (communication skill) x 3 (degree of 

specialization) fully crossed factorial design, resulting in 27 unique conditions. A total of 3000 teams were simulated 

with approximately 111 teams per condition; this sample size allowed for variability in knowledge emergence to arise 

within conditions while also achieving between-condition stability in results. Teams consisted of three simulated 
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agents, each of whom could communicate with all other team members. The total knowledge pool which agents 

attempted to acquire contained 36 pieces of information and was held constant across all simulation runs. A 

knowledge pool of this size permitted flexibility to vary the degree of specialization within a team while still keeping 

the total amount of knowledge to be learned equivalent across teams and conditions. Each learning and sharing 

phase lasted for 50 time steps. Thus, agents could make a maximum of 50 encoding or integration actions during a 

learning phase, after which point a new sharing phase would begin; similarly, each agent could make a maximum of 

50 communication or decoding attempts during a sharing phase before switching to a new learning phase. Permitting 

50 steps per phase ensured that even teams who were poor at learning and sharing knowledge would eventually 

acquire the entire knowledge pool within a reasonable number of simulated iterations. The computer code for the 

ABS and virtual experiment was programmed in R (R Core Team, 2016).2 

 Information processing skill. To operationalize individual differences in how quickly knowledge is 

internalized, agents were assigned an information processing skill level (high, moderate, low) that determined the 

rate at which they encoded and decoded information. Information processing skill was manipulated at the team-level 

such that all agents within a team possessed a similar skill level. An agent’s encoding rate reflected the number of 

repetitions required to fully internalize a piece of information that could be accessed without input from any other 

agent (i.e., learning-from-self); alternatively, the decoding rate reflected the number of repetitions required to fully 

internalize a piece of information shared by another agent (i.e., learning-from-others). The encoding rate for each 

agent was determined by randomly sampling an integer between 3-5 repetitions for an agent in the high information 

processing skill condition, 6-8 for an agent in the moderate skill condition, and 9-11 for an agent in the low skill 

condition. Decoding rates were set proportionately to encoding rates, but were slower. The magnitude of this 

difference was informed by previous research reporting an average effect size of d ~ -.50 for knowledge test 

performance between individuals who learned through verbal instruction (most consistent with learning-from-

others/decoding) and those who learned through self-directed reading (most consistent with learning-from-

self/encoding, Corey, 1934; Spencer, 1941; Russell, 1928). Decoding rates for an agent were thus increased by one 

repetition relative to its respective encoding rate; thus, it took an agent slightly longer to internalize a piece of 

information when learning it from a team member. Integration rates were held constant across ability level such that 

integrating data to create internalized knowledge required only one repetition for all agents. 

 Communication skill. Differences in how frequently agents communicated with one another were 

operationalized by assigning each agent a speaking probability indicating the likelihood they would elect to speak and 
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share information at each time step during a sharing phase. Communication skills thus influenced which member was 

selected to speak at each time point and therefore what information could be disseminated to team members. This 

variable was manipulated at the team-level to construct three experimental conditions. In the first condition, the agent 

with the lowest information processing skills on the team was twice as likely to speak as the remaining agents. In the 

second condition, all agents had the same probability of speaking. Finally, in the third condition, the agent with the 

highest information processing skill was twice as likely to speak as its team members.3 

 Degree of specialization. The final experimental manipulation concerned the degree to which information 

was specialized in the team’s environment. Degree of specialization reflected the relative proportion of a team’s 

knowledge pool that was “common” versus “unique” to agents. Common information represents information available 

and interpretable by all individuals without input from any other members; in contrast, unique information is only 

available and interpretable by a single team member and therefore must be shared for others to learn. Thus less 

unique/more common information is characteristic of lower specialization in the task environment, whereas more 

unique/less common information is characteristic of greater specialization. Degree of specialization was manipulated 

at the team-level to create three conditions that varied the proportion of unique versus common information present 

in the team’s task environment. In the low specialization condition, 33% of the information to be learned by agents 

was unique while the remaining 66% was common. In the moderate specialization condition, 50% of the information 

was unique and 50% was common. Finally, the knowledge pool in the high specialization condition was composed of 

66% unique and 33% common information. 

Measures 

 Kozlowski and Chao’s (2012a) team knowledge typology served as the foundation for measuring emergent 

team knowledge outcomes. The typology proposes a number of potential metrics for quantifying how internalized and 

externalized knowledge changes at the individual and team levels over time. Since all agents in the simulation 

eventually acquired all possible knowledge, these metrics were adapted to analyze the total number of actions (i.e., 

rates) needed by agents to achieve full knowledge acquisition. The measures described below thus provide different 

vantage points for conceptualizing the effectiveness and efficiency by which knowledge emerged in the team. 

 Individual Internalization. Individual internalization describes the proportion of the total knowledge pool 

that an agent has personally internalized. Given differences in their information processing and communication skills, 

different agents could possess different amounts of internalized knowledge at any given point within a trial. Since all 

agents eventually acquired 100% of the knowledge pool, individual internalization was operationalized as the number 
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of actions an agent needed to fully internalize the entire knowledge pool. Larger values on this measure indicated an 

agent took longer to acquire all the available knowledge through learning and sharing. 

Team Internalization Variability. Team internalization variability reflects within-team differences in 

knowledge acquisition trajectories. Team internalization variability was thus operationalized as the within-team 

variance in the individual internalization rates of agents in each team. Larger values on this measure indicated that 

agents within the team tended to acquire information at different rates. 

 Team Knowledge Coverage. Team knowledge coverage describes the proportion of the total knowledge 

pool acquired by a team as a whole. Achieving total team knowledge coverage does not mean that every individual 

has internalized the entire knowledge pool; rather, it indicates that the team as a collective has internalized all 

possible knowledge (i.e., there are no empty “wedges” in the Knowledge Pool diagram shown in Figure 2). This 

metric was computed as the number of actions required by a team to collectively internalize the complete knowledge 

pool. Larger values on this measure indicated that an agent team was less effective at carrying out learning 

processes needed to acquire the information available to each agent. 

 Internalization Distribution. Internalization distribution characterizes the degree to which one or more 

members in a team have internalized the same pieces of information. At any given time, a single piece of information 

may be internalized by only one agent (Internalized: Non-overlapping), some but not all agents (Internalized: Partially 

Overlapping), or all agents (Internalized: Fully Overlapping; see Figure 2). Because all agents eventually internalized 

all pieces of information, this variable captured the number of actions required for a team to achieve fully overlapping 

internalization across all pieces of information in the knowledge pool. Larger values on this measure indicated that 

the agents on a team were less effective and efficient at both acquiring and distributing information to other agents. 

 Externalization Distribution. Similar to internalization distribution, externalization distribution describes the 

degree to which members in a team have externalized the same pieces of information. At any given time, a piece of 

information in the knowledge pool can be externalized by either some but not all agents (Externalized: Partially 

Overlapping) or all agents (Externalized: Fully Overlapping; see Figure 2). This measure captured the number of 

actions required by a team to achieve fully overlapping externalization across all pieces of information in the 

knowledge pool. Larger values indicated that agents were less efficient and effective at distributing and 

acknowledging internalized information from one another. 
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Analyses 

 Individual internalization was measured at the agent-level; thus, multilevel random coefficient modeling 

(MRCM; Level-1: agent, Level 2: team) was used to examine the impact of the experimental manipulations on this 

dependent measure. The information processing skill, communication skill, and degree of specialization conditions 

were modeled as dummy variables in the Level-2 equation (Appendix B provides the full MRCM specification). All 

other outcome variables (team internalization variability, team knowledge coverage, internalization distribution, and 

externalization distribution) were assessed at the team level. Univariate analysis of variance (ANOVA) tests that 

included information processing skill, communication skill, and degree of specialization as between-group factors 

were performed to evaluate the effect of each manipulation on the team-level dependent measures.4 

RESULTS  

Information Processing Skill 

 The MRCM analyses for individual internalization revealed that agents on teams whose members all 

possessed high levels of information processing skill were significantly faster at internalizing the knowledge pool 

relative to agents on teams composed of members with moderate (b = 7.98, p < .001) or low (b = 16.38, p < .001) 

skill levels (Table 1). Evaluation of the ANOVA results indicated that differences in teams’ information processing 

skills exerted large effects on team knowledge coverage (partial η2 = .654, p < .001), internalization distribution 

(partial η2 = .887, p < .001), and externalization distribution (partial η2 = .885, p < .001; top row of Table 2) such that 

teams composed of agents with better encoding/decoding rates tended to acquire the entire knowledge pool 

collectively as well as achieve full knowledge internalization and externalization more quickly. Additionally, Table 2 

reveals a small effect of team information processing skill on team internalization variability (partial η2 = .072 p < 

.001) such that teams composed of agents with higher learning rates tended to have slightly higher variability among 

individual internalization rates.5 In sum, the overall pattern of results indicated that knowledge emergence at both the 

individual- and team-level was enhanced when the encoding and decoding rates of team members were higher. 

Communication Skills 

 The MRCM results for communication skills revealed that on teams where the member with the highest 

information processing skill spoke most frequently, agents took only slightly longer to individually internalize the full 

knowledge pool than agents on teams where the least skilled member spoke more often (b = 0.48, p < 0.001, Table 

1). However, agents tended to internalize the knowledge pool much faster when all members spoke equally (b = -

8.29, p < 0.001, Table 1). This pattern emerged because agents engaged in information sharing could not 
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simultaneously be engaged in learning. Since only one member could speak at a time, teams in which one individual 

communicated more frequently tended to impede other members from disseminating their knowledge as quickly to 

the team. In contrast, when information sharing was more balanced, all members were more likely to regularly 

participate in sharing and decoding, thus leading to quicker individual-level knowledge acquisition. 

 Consistent with these individual-level findings, the team-level ANOVAs indicated that teams whose agents 

were equally likely to engage in information sharing were also faster at fully internalizing (partial η2 = .912, p < .001) 

and externalizing (partial η2 = .991, p < .001) knowledge than teams where one agent was more likely to speak than 

others (Table 2, second row). Communication skills also exhibited a small impact on team internalization variability 

(partial η2 = .026, p < .001) such that differences in knowledge acquisition rates were highest in teams whose agents 

had equal speaking probabilities, but did not differ when one member was more talkative than others. This pattern of 

results occurs because when one member tends to communicate more than others, the remaining members are 

more often engaged in decoding and are thus internalizing information at similar rates. On a team with only three 

members, this results in similar learning curves for the majority of the team. Alternatively, when members share 

information equally, different members learn at different times, leading to the potential for slightly higher within-team 

variability in internalization. Lastly, communication skills had no influence on team knowledge coverage (partial η2 = 

.000, p = .994, Table 2). This result was unsurprising given that teams could achieve collective coverage of the entire 

knowledge pool entirely through individual learning activities. That is, achieving complete team knowledge coverage 

only requires each member to learn his/her own unique information and for one or more members to also learn the 

available common information—all of which can be completed without communication. Taken together, results from 

the communication skills manipulation indicate that team knowledge emergence was facilitated when information 

sharing was more balanced across members. 

Degree of Specialization 

 The MRCM analyses and Table 1 show that the effect of team specialization on individual internalization 

was such that agents were less efficient at internalizing knowledge as the overall percentage of unique information 

increased (50% unique: b = 3.82, p < 0.001; 66% unique: b = 16.43, p < 0.001). The ANOVA results reveal a similar 

trend for the team-level metrics; higher proportions of unique information decreased the rate at which teams achieved 

collective team knowledge coverage (partial η2 = .832, p < .001) as well as fully internalized (partial η2 = .914, p < 

.001) and externalized (partial η2 = .913, p < .001) knowledge (Table 2, bottom row). Higher proportions of unique 

information also led to slightly higher variability in internalization rates (partial η2 = .143, p < .001).  
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 Interestingly, the simulation findings suggested that the impact of team specialization on knowledge 

emergence may not be linear in nature. Both the MRCM and ANOVA results consistently revealed that differences in 

the amount of time required to internalize and externalize knowledge when the proportion of unique information 

increased from 50% to 66% was larger relative to when the proportion of unique information increased from 33% to 

50%. In other words, as the degree of specialization across team members increased, the “bottlenecks” created by 

sharing processes became increasingly more difficult to overcome. The overall pattern of findings thus reflect that as 

teams become more distributed in their expertise, communication—and the slower, more difficult information sharing 

and decoding processes—play an increasingly significant role in team knowledge emergence. 

DISCUSSION 

 The purpose of Step 3 was to (1) evaluate the logical coherence of our theory of team knowledge 

emergence and (2) identify prescriptions for how individual- and team-level knowledge emergence could be 

enhanced in real teams. To accomplish these goals, the core concepts and mechanisms of team knowledge 

emergence proposed in our theory were instantiated into an ABS and used to conduct a virtual experiment in which 

key learning and sharing processes (information processing and communication skills) of agents as well as a 

structural team variable (degree of specialization) were systematically manipulated. With respect to the first objective, 

the simulated results were consistent with conceptual and empirical work on knowledge-building in teams. Previous 

theory posits that individual differences in learning associated with either task role or person should be positively 

related to team knowledge development (e.g., Fiore, Rosen et al., 2010, Hinsz et al., 1997). This proposition was 

replicated in the simulations as teams whose agents possessed better information processing skills (i.e., faster 

encoding/decoding rates) were more effective at acquiring individual- and team-level knowledge.  

 The results for communication skills (i.e., who shares information and therefore what information gets 

shared) and degree of specialization were similarly coherent with research on “hidden profiles” in team decision-

making contexts. That research tends to find that the distribution of unique information across team members as well 

as variability in communication rates strongly influence team cognition (e.g., Lu et al., 2012; Mohammed & Dumville, 

2001). However, previous work in this area often concludes that knowledge inefficiencies in contexts with distributed 

expertise emerge because members prefer to communicate commonly held information (e.g., Stasser & Titus, 1985, 

1987). Our simulations, though, provide an alternative explanation not based on member preferences or biases—a 

common critique of the hidden profile literature (Wittenbaum, Hollingshead, & Botero, 2004). Specifically, our results 

demonstrate that chokepoints in team knowledge emergence can occur when acquiring knowledge through sharing 
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processes is more difficult for individuals (i.e., slower decoding relative to encoding rates) and if members are not 

well coordinated in their communication activities (i.e., single member tends to dominate conversation). Furthermore, 

greater differentiation in member specialization requires individuals to rely more on decoding and communication 

processes to acquire knowledge, thus creating greater potential for inefficiencies during team knowledge-building. In 

sum, consistencies between the simulated results and those in the broader team cognition literature provide evidence 

that the process mechanisms specified in our theory can account for characteristic patterns of emergent knowledge 

outcomes in teams. The results also revealed interesting insights into the coordination demands underlying 

information sharing, and showed that inefficiencies in knowledge emergence can arise even when members do not 

possess biases towards discussing particular types of information. 

 With respect to the second goal of Step 3, the results of the information processing and communication skill 

manipulations highlight two prescriptions for improving team knowledge emergence in real teams. First, efforts to 

increase the speed and accuracy with which individuals internalize knowledge (i.e., encode and decode information) 

are likely to improve team knowledge outcomes. Improving team members’ information processing skills should 

benefit team knowledge emergence by (a) reducing the time needed to acquire specialized knowledge during more 

independent learning phases of activity, thereby allowing teams to focus more on coordinating more demanding and 

interdependent information sharing processes; and (b) reducing the number of communication attempts needed to 

internalize information shared by others and thus improving the efficiency of team knowledge externalization. A 

second prescription involves coordinating how and when information is shared within teams. In the simulations, the 

best form of communication occurred when agents shared information at equivalent rates. In real teams, similar 

strategies that balance the regularity with which individuals engage in communication should be beneficial because 

they help members know when to expect incoming information, minimize process loss resulting from having to repeat 

missed information, and promote more rapid acquisition of specialized knowledge across all members. 

 These observations characterize how team knowledge outcomes could be enhanced by targeting key 

processes of team knowledge emergence. That is, the theory of team knowledge emergence summarized in Figure 2 

and explored in the ABS offers a plausible account for how and why team knowledge outcomes are generated 

(process → outcome). The factors which potentially influence these processes (inputs → process) will vary widely 

and could include individual differences, training, work design, task characteristics, and group composition, among 

others. Consequently, the simulation results and proposed model are not intended to suggest specific methods, 

interventions, or antecedents that correlate with better team knowledge outcomes. Instead, the proposed theory 
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works to unpack the black box of team cognition by identifying core mechanisms of knowledge emergence and 

elaborating how these processes generate collective knowledge. Such foundational theory affords future research 

the opportunity to not only explore inputs that influence a team’s capacity to carry out these fundamental processes, 

but also provide precise explanations for why such factors are effective and how they operate.  

 The model of team knowledge emergence summarized in Figure 2 and enacted in the ABS can be used to 

explore either general or context-specific prescriptive guidance for enhancing knowledge emergence in real-world 

teams. Given that we were not attempting to address knowledge emergence in a specific team or task setting in this 

initial conceptualization, we advance the following general prescriptions for enhancing knowledge emergence in real 

teams based on our theory and the results of the ABS: 

Proposition 1: Improving the rate at which team members encode and decode information (i.e., information 

processing skills) facilitates team knowledge emergence by allowing individuals to more effectively 

internalize knowledge overall as well as devote more time to acquiring information shared by others. 

Proposition 2: Information sharing strategies (i.e., communication skills) that promote more balanced and 

regular exchange across members facilitates team knowledge emergence by increasing the rate at which 

specialized knowledge is disseminated and collectively acknowledged within the team. 

STEP 4: EMPIRICAL INVESTIGATION OF KNOWLEDGE EMERGENCE IN REAL TEAMS 

 The findings from Step 3 support the generative sufficiency of our theory of team knowledge emergence; 

that is, the core theoretical process mechanisms and interactions formalized in the computational model and ABS 

offer a conceptually plausible account of the macro-level occurrence (Epstein, 1999). A next important litmus test is 

the extent to which the patterns of emergence and predicted outcomes observed in a simulation share fidelity with 

the “real world” (Davis et al., 2007; Kozlowski et al., 2013). The empirical experiment pursued in Step 4 thus has two 

key objectives: (1) investigate the fidelity of knowledge emergence patterns observed in simulated agent teams 

against comparable human teams, and (2) evaluate the utility of the prescriptions derived from our theory and ABS 

for enhancing knowledge emergence in real teams. 

 Attempting to exactly replicate the design and analyses of the virtual experiments pursued in Step 3 

represents only one possible strategy for accomplishing these objectives with empirical data. However, replicating an 

ABS with real data is frequently infeasible and impractical given the number of parameters and parameter levels that 

could be manipulated as well as the sample sizes that would be needed to adequately examine the full parameter 

space. Reproducing all possible outcomes from an ABS is fortunately not the only solution for supporting inferences 
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generated from a computational model. A significant advantage of developing theory through computational modeling 

is that simulation can be used to do the “heavy lifting” of experimentation so as to identify interesting insights into the 

generative mechanisms that give rise to patterns, trends, or reactions within a system. These observations can be 

projected forward to direct empirical investigation towards specific conditions where differences in the core process 

mechanisms reveal salient differences in emergent outcomes within real systems (Kozlowski et al., 2013). Support 

for the specification of a process-oriented theory and the validity of its prescriptions is subsequently gleaned by 

examining whether the emergent patterns observed in real data are similar to those observed in simulated data 

(Harrison et al., 2007; Wilensky & Rand, 2015). 

 We thus empirically investigate patterns of team knowledge emergence in human teams collaborating in a 

knowledge-building and decision-making task which necessitated learning and sharing processes analogous to those 

carried out by agents in the ABS of Step 3. To investigate the first objective of Step 4 (i.e., assessing fidelity between 

empirical and simulated patterns of emergent team knowledge), we examine the accumulation of individual and team 

knowledge as it occurs in real-time in human teams. Focusing on the development of knowledge at this level of 

analysis allows us to evaluate whether central assumptions of the model and the characteristic patterns of knowledge 

emergence observed in simulated teams (e.g., are teams slowed when transitioning from learning to sharing phases 

of activity?) are reflected in the actions of real teams. Producing simulated data capable of mirroring the manner by 

which knowledge develops and becomes distributed within real teams increases confidence in the conclusion that 

our theory captures concepts and process mechanisms central to team knowledge emergence. 

RQ1: To what extent do human teams exhibit patterns of individual- and team-level knowledge emergence 

similar to those observed in simulated teams? 

 Accomplishing the second objective of Step 4 (i.e., assessing the validity of prescriptions for improving team 

knowledge emergence) necessitates systematically influencing how team members carry out the core processes of 

team knowledge-building. More specifically, examining the model-derived propositions in Step 3 involves shaping 

members’ learning and sharing processes and evaluating if changes to those processes contribute to differences in 

team knowledge outcomes. Unlike influencing the behavior of simulated agents though, it is not possible to simply 

“flip a switch” and immediately improve the information processing and communication skills of human teams. 

Morgeson and Hoffman (1999) note that such constructs reflect structured cycles of activity that unfold within and 

between individuals over time. Altering these processes should lead to corresponding changes in individual- and 

team-level outcomes, but their effects will take time to manifest as members actively reshape their interdependent 
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behaviors and cognitions. In other words, improving knowledge emergence in real teams requires members to “learn 

how to learn.” Empirically evaluating the proposed prescriptions for improving team knowledge emergence must 

therefore permit time for this change process to unfold and for individuals to improve their capacity to engage in 

effective learning and sharing processes. The theory instantiated in our computational model and the results from the 

ABS identify precisely which processes members should focus on improving as well as how and why improving those 

processes will contribute to team knowledge outcomes (process → outcome).6  

 Our strategy thus involves introducing interventions designed to promote better information processing and 

communication skills in teams engaged in a knowledge-building task.7 These interventions targeted the same 

learning (e.g., encoding/decoding) and sharing (e.g., member selection) processes as those manipulated in the ABS 

and were designed to make human teams more like the “best” simulated teams. More specifically, the interventions 

sought to improve the efficiency with which members learned-from-self and learned-from-others as well as promote 

more equal rates of information sharing among members. Teams performed multiple trials of the knowledge-building 

task to allow time for these interventions to shape their learning and sharing processes and manifest as differences in 

emergent team knowledge. The ability to contrast knowledge emergence in teams receiving interventions designed 

to improve the core process mechanisms against those not receiving similar guidance also provides further 

opportunity to evaluate the impact of mechanisms on team knowledge development. In sum, teams that improve their 

capacity to perform the core learning and sharing processes specified in our theory of team knowledge emergence 

should become more proficient at developing actionable and externalized team knowledge over time. 

Hypothesis 1: Teams receiving an intervention to improve information processing and communication skills 

will be more effective at developing externalized team knowledge relative to control teams. A significant 

Intervention x Time interaction will be observed such that the amount of knowledge externalized will 

increase at a faster rate across trials for teams receiving the intervention. 

METHODS 

Participants 

 Undergraduate students (n = 789) recruited from psychology and management courses participated in the 

study for course credit. Participants were randomly assigned into three-member teams (k = 263 teams), and sessions 

were conducted with 9 to 18 participants per session. Given the virtual nature of the task environment, team 

members were not physically seated together nor did they know the identities of the other individuals on their team at 
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the start of the experiment. Thus, the teams were composed of spatially distributed members who initially had low 

familiarity and experience working with the other members of their team.  

Experimental Task 

 A computer-based task simulation was developed to examine the emergence of team knowledge outcomes 

and capture behaviors related to learning and sharing (Kozlowski, Chao, Grand, Braun, & Kuljanin, 2016). The Crisis 

Relief Operation: Naval Unit Simulation (CRONUS) is a timed team learning and decision-making task in which 

members with different role specializations must find, learn, share, and synthesize information in order to make 

accurate decisions. The distribution of information within the task is similar to a hidden profile in that the total 

available knowledge pool is composed of both common and unique information (Stasser & Titus, 1985, 1987). Each 

member of the team is assigned an explicit task role (i.e., Transport, Intel, Engineer) that enables them to identify and 

learn certain information that no other team members can access. Individuals were thus aware they each possessed 

distinct expertise and sources of information and needed to work collaboratively to fully acquire the knowledge 

needed to make effective decisions. 

 The primary objective in CRONUS was for teams to select one of three possible routes shown on a map 

that could be used to travel between a designated starting and ending location. Making this decision effectively 

required teams to learn about the presence of obstacles along each route that could impede their travel. To identify 

and learn about obstacles, each team member had their own specialist map that could only be viewed and accessed 

by that member. Each member’s specialist map contained information about two obstacle classes: unique obstacles 

only accessible to a single member because of their specialized task role (e.g., only the Transport member can 

initially learn about obstacles related to poor road conditions) and common obstacles accessible to all members (e.g., 

all members can initially learn about obstacles related to mountainous terrain). The various unique obstacles located 

on members’ specialist maps represented the specialized expertise they brought to the team. As a result, no single 

individual could locate and learn all the obstacles present in a scenario without input from other members. 

 Once a member identified that a particular obstacle was present, they could “post” this information to their 

specialist map to document they had learned about the presence of an obstacle. To share information about 

obstacles with team members, individuals also had access to a commonly shared workspace labeled the mission 

map. The mission map was identical in appearance to the specialist map except that it initially contained no 

information about obstacles. However, all team members could post information to the mission map about obstacles 

they had located using their specialist map at any time. If an individual shared information by posting an obstacle to 
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the mission map, the other team members had a limited period of time to view that information before it disappeared 

and needed to be communicated again.8 Team members could acknowledge that they had attended to and learned 

about an obstacle shared on the mission map by viewing the shared post and recording that information on their own 

specialist map. When all team members acknowledged a particular obstacle by posting it to their respective specialist 

maps, the obstacle remained permanently visible on the mission map. In this sense, the specialist map provided a 

snapshot of how much information each member had internalized, whereas the mission map reflected how much 

information the team as a whole had collectively externalized. 

 Each scenario contained 15 total obstacles (five per route) representing the total knowledge pool to be 

acquired by the team. Of those 15 obstacles, three were common obstacles and the remaining 12 obstacles were 

unique (80% of knowledge pool was unique information, representing a high degree of specialization within the 

team). The total number of unique obstacles to be learned was distributed equally across members such that, in 

every trial, each team member was responsible for finding and learning about four unique obstacles related 

specifically to their task role. On any given trial an individual could thus only acquire information about seven 

obstacles (four unique and three common) without input from another team member. To acquire the entire knowledge 

pool (i.e., all 15 obstacles), members needed to share information about the unique obstacles they learned 

individually with others on the team. As shown in Table 3, the processes required to fully internalize and externalize 

knowledge in CRONUS were parallel to those specified in the ABS. 

Procedure 

 The experimental sessions were conducted in a large computer lab and lasted 2.5 hours. Prior to arrival, all 

participants were asked to watch a 10-minute online instructional video introducing the objectives and task 

mechanics of CRONUS. Once participants arrived at the lab and teams had been assigned, all individuals engaged 

in a 30-minute interactive guided training session. In addition to reiterating the information presented in the 

instructional video, the guided training provided more detailed instructions on how to perform specific task functions 

(e.g., switching between maps, locating and posting obstacles, sharing obstacle information, etc.) as well as 

opportunities to practice these actions using CRONUS. Following training, participants were given a cover story 

describing their overall team mission, informed of their unique team roles, and told they would be working together 

with their team members in the CRONUS simulation. 

 Teams attempted to complete 12 trials within CRONUS. Each trial lasted 8 minutes and contained the 

information distribution structure described previously. The configuration and location of obstacles differed across 
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trials. To ensure that teams progressed in a timely fashion, a countdown timer was displayed on each member’s 

screen indicating the amount of time remaining in the trial. After 6 minutes had elapsed within the trial, members 

could no longer post obstacles to the specialist or mission maps and could only enter their final decisions. At the 

conclusion of each trial, teams were provided with feedback on the total number of obstacles learned by the team 

and each member, the number of information sharing attempts made and missed, and the accuracy of individual and 

team decisions. After 12 trials had been completed or a 2-hour time limit had been reached, participants were 

provided with a debriefing form and were free to leave the session. 

Experimental Manipulation 

 The extent to which team knowledge acquisition could be improved through targeting core learning and 

sharing mechanisms was examined by randomly assigning teams to either a control or experimental condition. 

Teams in the control condition completed the task trials with no guidance beyond the initial training. For teams in the 

experimental condition, a set of contextualized guidance (CG) prompts were created and embedded within CRONUS 

that could be triggered by specific errors or inefficiencies. The CG was delivered through a pop-up window on the 

screen of the individual who performed the triggering action. When the window appeared, individuals read the CG 

provided, closed the window, and then could correct the error and continue on with the task.  

 In total, ten different CG prompts were employed that provided feedback and recommendations to team 

members for improving their information processing and communication skills.9 Table 4 lists each prompt and 

summarizes the rationale for how these items were intended to improve the core learning and sharing processes of 

team knowledge emergence. Construction of the CG prompts were informed by the simulation results and 

propositions summarized in Step 3. They were specifically designed to (a) improve the encoding/decoding rates of 

individuals and (b) suggest information sharing strategies that promote frequent and equal participation by all 

members. To allow the experimental condition team an opportunity to gain familiarity with the basic task mechanics in 

CRONUS, the CG was not introduced until the start of Trial 3. The CG was removed at the beginning of Trial 10. 

Measures 

 A log file containing every task-relevant behavior (i.e., mouse click) performed by each individual was 

recorded for all trials. Behaviors were automatically categorized and time-stamped, thus making it possible to track 

precisely when, what, and how knowledge was being acquired and distributed during each trial. The data most 

relevant for the present study was the posting of any correct obstacle to a participant’s specialist map. This action 

explicitly reflects knowledge internalization in CRONUS, and could only occur if a participant correctly identified an 
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obstacle by learning its specific type and location from the specialist map (no communication needed from other 

members to learn) or the mission map (communication needed from other members to learn). Consequently, any of 

the operationalizations of team knowledge emergence defined in Step 3 could be computed from these data. 

Analyses 

 Fidelity comparisons. A qualitative descriptive approach was adopted to examine RQ1 and the fidelity of 

team knowledge emergence patterns observed between participant data and data generated using our ABS. More 

specifically, representative human teams were selected from the empirical data and then compared to an agent team 

whose information processing skills, communication skills, and degree of specialization were parameterized under 

conditions similar to those in the human teams. If the general patterns of knowledge emergence observed in these 

data shared fidelity, then it increases confidence in the conclusion that our model and theory reflects the process 

mechanisms central to team knowledge-building.  

 One human team was randomly selected from both the control and experimental conditions during Trial 10 

to serve as the representative comparison. The decision to sample data from Trial 10 was made because participants 

were more likely to have a better understanding of how to acquire and share knowledge through the CRONUS 

interface during a later trial in the experiment. As a result, the degree of random noise in team knowledge outcomes 

attributable to unfamiliarity operating and interacting within CRONUS should be attenuated and thus provide a better 

comparison between the simulated and human team knowledge outcomes. We next constructed a simulated agent 

team that closely paralleled the conditions under which the human teams performed.10 Similar to the participant 

teams’ task environment in CRONUS, the comparison agent team was constructed with a high degree of 

specialization (75% of knowledge pool was unique information). The information processing skills of agent teams 

were also parameterized to reflect the within-team variability observed in the learning rates of human teams. The 

simulated team thus possessed one agent with high, one agent with moderate, and one agent with low information 

processing skills. Lastly, the communication skills of the simulated team were set such that all agents were equally to 

participate in information sharing (i.e., equal sharing rates). The individual internalization and internalization 

distribution measures previously described in Step 3 were examined for the fidelity comparisons. The individual 

internalization measure provides insights into the trajectories of each individual member’s knowledge acquisition over 

time (individual-level), while the internalization distribution measure provides an indication of how knowledge 

transitioned from individually to collectively held over time as it is disseminated across team members (team-level). 
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 Experimental manipulation. The impact of the CG targeting information and communication skills on team 

knowledge outcomes across trials for participant teams was analyzed using MRCM to account for the nested data 

structure (Level-1: trial; Level-2: team). The dependent variable was the total number of correctly posted obstacles 

which all three members held in common on the mission map at the end of each trial. This team-level metric reflected 

the amount of fully-overlapping externalized knowledge that had emerged within the team (cf., Figure 2). Because 

this measure can only increase if all team members learn and share the same pieces of information, it provides the 

most direct indication of how effectively teams collectively accumulated knowledge in each trial.  Hypothesis 1 was 

assessed by regressing this dependent measure on trial number (Level-1 predictor; 0 = Trial 1) and a dummy coded 

condition variable (Level-2 predictor; 0 = control, 1 = experimental). Visual examination of the observed data trends 

also suggested the presence of non-linear changes in the dependent variable across trials; thus a quadratic trial 

variable was modeled at Level-1 (see Appendix B for full model specification). 

RESULTS 

 Computer recording errors resulted in unusable data for six teams. Additionally, only 212 teams (80%) 

completed all 12 trials during the experimental session. The final reported analyses are thus based on teams from 

the control (k = 110) and experimental (k = 102) conditions who had complete data for all experimental trials.  

Fidelity of Simulated and Participant Data 

 Figures 3 and 4 show changes in individual knowledge internalization and the distribution of internalized 

knowledge, respectively, for the representative simulated, experimental condition, and control condition teams.11 An 

overall comparison of the figures reveals a number of notable similarities in patterns of team knowledge emergence 

between the agent and human teams. Figures 3A and 3B reveal that agents in the simulated team (gray lines) and 

human members in both the control and experimental conditions (black lines) experienced a relatively rapid period of 

initial individual internalization during which a sizeable portion of the knowledge pool was acquired. Figure 4A shows 

that the knowledge acquired during this initial burst was primarily non-overlapping, with a smaller proportion partially 

(Figure 4B) or fully overlapping (Figure 4C). These results indicate that early knowledge emergence in both the agent 

and human teams was largely a function of learning processes targeted towards acquiring unique (which emerges as 

non-overlapping information) and common (which emerges as partially and then fully overlapping information as 

multiple members learn the same thing) knowledge that is available without input from other members. 

 The accumulation of knowledge in agent and participant teams then slows substantially as members reach 

the limit for what they can learn by themselves (50% and 47% of knowledge pool for simulated agents and 
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participants, respectively). At this point, the more time intensive and difficult sharing processes began to take 

precedence. Figure 3 shows that the concentrated shift in emphasis towards sharing processes (occurring near the 

30-45 second mark for the selected participant teams and the 120 second mark for the simulated team) led to higher 

variability in individual internalization rates. This pattern is attributable to two pragmatic constraints imposed on 

individual knowledge acquisition when teams engage in knowledge sharing: (1) when individuals “speak up” to share 

knowledge, they cannot also internalize new knowledge, and (2) members require more and more frequent 

exposures to internalize communicated knowledge. Both of these factors compound the amount of time needed to 

acquire knowledge during sharing, subsequently decreasing the overall internalization rate of all team members. The 

common internalization trajectories demonstrated by the experimental and control condition teams in Figures 3A and 

3B demonstrate this universal inefficiency of sharing relative to learning processes in team knowledge emergence. 

 Whereas Figure 3 paints a similar pattern of individual-level knowledge internalization among the simulated, 

control, and experimental condition teams, changes in the distribution of internalized knowledge over time reveals 

two critical distinctions in team-level knowledge emergence across these conditions. First, the representative 

experimental condition team (solid black line) achieved total team knowledge coverage (i.e., all items in the 

knowledge pool known by at least one member on the team) earlier than the representative control condition team 

(black dashed line). This is reflected in Figure 4A as the earliest point at which the maximum proportion of non-

overlapping knowledge is achieved.12 This finding is noteworthy because it provides evidence that the CG targeting 

information processing skills provided to the experimental team improved the speed and accuracy with which 

individuals acquired unique knowledge compared to the control condition team. Consistent with Proposition 1 from 

Step 3, this enabled these teams to direct attention towards the more demanding sharing processes sooner—an 

important consideration given the time constraints faced by participant teams in the experiment.  

 A second noteworthy distinction concerns the manner by which privately held knowledge transitioned to 

collectively held team knowledge as individuals began to engage in sharing activities. Once team members began 

sharing information, the proportion of non-overlapping knowledge in the team decreased relatively quickly (Figure 

4A). As expected, this was accompanied by increases in the amount of overlapping knowledge across members; 

however, whether this increase manifested as partially or fully overlapping knowledge was diagnostic of the team’s 

information sharing efficiency. For the simulated and experimental condition teams shown in Figure 4B, the 

proportion of partially overlapping team knowledge remained consistently low, rarely exceeding 20% at any point and 

reaching 0% by the end of the trial. In contrast, the proportion of partially overlapping knowledge held by the control 
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condition team varied between 30-40% for nearly two-thirds of the trial. These results indicate that a sizable portion 

of knowledge in the control condition team became “stuck” in the bottlenecks created by inefficient communication 

processes that prevented information from reaching all three members. This conclusion is also reflected in the 

differential rates at which fully overlapping knowledge accumulated for these teams. As Figure 4C shows, both the 

experimental and simulated teams were more efficient at generating collectively held knowledge compared to the 

control condition team. Notably, this pattern of results lends support to Proposition 2 derived from the simulated 

results (Step 3) as it demonstrates that teams which received guidance to engage in more regular and balanced 

sharing processes were more effective at generating fully shared team knowledge. 

 In sum, the representative simulated and participant teams demonstrated a number of key similarities in 

their individual- and team-level knowledge trajectories. This fidelity lends support to the conclusion that the core 

process mechanisms specified in our theory are capable of accounting for patterns of knowledge emergence in real 

teams. Differences in the knowledge outcomes observed among the two participant teams also demonstrates that 

the CG provided in the experimental condition was effective at stimulating improved individual and team knowledge-

building. Lastly, it is important to note that the CG was explicitly designed to improve a team’s information processing 

and communication skills in a manner consistent with the most effective simulated teams and the propositions 

advanced in Step 3. That the participant team receiving the intervention demonstrated patterns of team knowledge 

emergence more analogous to the simulated team further supports that the process mechanisms instantiated in the 

ABS are critical points of leverage for enhancing knowledge emergence in real teams. 

Experimental Manipulation 

 The qualitative assessments demonstrate that the core learning and sharing processes from our theory and 

ABS appear capable of sufficiently replicating patterns of knowledge emergence observed in real teams. The 

qualitative comparison of the representative experimental and control condition teams also provided some support for 

the effectiveness of the CG and the propositions generated from the simulated results for improving team knowledge 

outcomes. However, stronger support for the propositions derived in Step 3 would be found if teams given the CG 

designed to improve information processing and communication skills in each trial also tended to demonstrate better 

knowledge outcomes across trials (Hypothesis 1). This pattern of results would demonstrate that improving how 

teams carry out key learning and sharing processes (i.e., improving team knowledge emergence) leads to improved 

team knowledge outcomes. 
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 The total number of obstacles fully externalized by a team at the end of each trial was analyzed. Prior to 

testing Hypothesis 1, a panel augmented Dicky-Fuller test was conducted (drift and lag = 1) for each team’s data to 

evaluate the null hypothesis that the time series data resulted from a non-stationary stochastic process (Braun, 

Kuljanin, DeShon, 2013a; Braun, Kuljanin, DeShon, 2013b; Kuljanin, Braun, DeShon, 2011). The average test value 

across all teams was -1.69, exceeding the 5% critical value (-1.59) based on the number and length of the time 

series. Consequently, the null hypothesis was rejected and inferences from the MRCM analyses could be made 

without qualification. 

 Results from these MRCM analyses are reported in Table 5. No significant intercept differences were found 

across conditions (b = .34, 95% CI = [-.31, .99], ns), though significant main effects were observed for both the linear 

(b = 1.10, 95% CI = [.90, 1.29], p < .001) and quadratic (b = -.07, 95% CI = [-.08, -.05], p < .001) time terms. These 

findings indicate that the average number of obstacles fully externalized by teams in both conditions tended to be 

similar at Trial 1 and increased at a slowly decreasing rate on subsequent trials. However, the main effects were 

qualified by significant interactions between condition and both the linear (b = -.32, 95% CI = [-.60, -.03], p < .05) and 

quadratic (b = .05, 95% CI = [.02, .07], p < .001) time terms. Figure 5 plots the interaction effect as well as the mean 

number of obstacles fully externalized per trial for teams in each condition. The pattern of results reveals that the 

amount of fully externalized knowledge acquired by teams in the experimental condition increased at a fairly steady 

rate each trial with relatively little decline. In contrast, knowledge externalization for teams in the control condition 

increased at a similar rate early but plateaued near the mid-point of the experiment, at which point the experimental 

condition teams began to outpace the knowledge acquisition of control teams. Follow-up analyses revealed that 

significant differences in the number of obstacles learned between conditions first emerged at Trial 9 and that this 

difference remained significant through Trial 12 (all t-tests p < .05), thus supporting Hypothesis 1. 

DISCUSSION 

 The results of Step 4 contribute to the evaluation of our theory of team knowledge emergence in two key 

ways. First, they demonstrate that patterns of knowledge emergence observed in real teams share a high degree of 

fidelity with the patterns of knowledge emergence produced by simulated agents enacting the core process 

mechanisms specified in the theory. This is significant because it provides evidence that the processes represented 

in our theory offer a plausible account for how emergent knowledge manifests in real teams. For example, the 

empirical and simulated results both exhibit the bottleneck associated with information sharing which teams must 

overcome for collectively held knowledge to emerge. This observation is consistent with previous conceptualizations 
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of team cognition in contexts with distributed expertise which posit that the dissemination of unique knowledge 

among members requires greater coordination on the part of the speaker and receiver to prepare for, communicate, 

and interpret new information (e.g., Fiore, Rosen et al., 2010). Our theory also shows that such sharing processes 

cannot be divorced entirely from learning. When certain roles and/or members of the team experience more difficulty 

(i.e., are slower at) acquiring their own information or information communicated by other members, the emergence 

of both individually internalized and collectively externalized knowledge will be delayed as “faster” members are 

limited by the internalization rates of “slower” members. Additionally, since faster members will be able to learn the 

maximum amount of information that can be acquired without input from others more quickly, they may be more likely 

to engage in knowledge sharing attempts earlier and more often. These efforts are likely to be less effective given 

that slower members may be unprepared to attend to new incoming information. 

 These findings highlight a second notable contribution from Step 4 by demonstrating the usefulness of a 

process-oriented theory of team knowledge emergence for explaining and advancing prescriptions to enhance team 

knowledge emergence. The CG provided to teams in the experimental condition was designed to facilitate effective 

information processing and communication skills based on the insights and propositions gleaned from the ABS in 

Step 3. Figures 3 and 4 provide a clear indication of how these process-focused interventions contributed to 

improved patterns of team knowledge emergence, while Figure 5 demonstrates that shaping the processes of 

emergence were effective but took time to manifest (Morgeson & Hoffman, 1999). Interestingly, Figure 5 shows a 

noticeable dip in the number of obstacles fully externalized by teams in the experimental condition when the CG was 

first introduced at Trial 3. This likely occurred as teams reacted to the CG and attempted to adjust their learning and 

sharing processes accordingly. In other words, teams were forced to reorient themselves and began “learning how to 

learn” as a coordinated and efficient unit at this time. The benefit of improving these processes grew increasingly 

apparent as the knowledge acquisition of experimental teams continued to improve while the control teams 

plateaued. Taken together, the results observed in Step 4 offer compelling support for the validity and utility of our 

process-oriented theory of team knowledge emergence. 

GENERAL DISCUSSION 

 Nearly two decades ago, Hinsz et al. (1997) noted a paradigmatic shift towards the consideration of teams 

as key decision-making and information processing units in the workforce. That perspective has grown to emphasize 

the critical role of team cognition in supporting effective functioning across a variety of contexts (Mesmer-Magnus & 

DeChurch, 2009; Wildman et al., 2012). While the team cognition literature has witnessed significant advancements 
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over this period, few efforts have been made to precisely define and operationalize the fundamental process 

dynamics underlying the emergence of team knowledge (Mohammed et al., 2012). The lack of a process-level 

framework for team knowledge emergence significantly limits insights into how and why teams differ in their capacity 

to generate actionable and collectively held knowledge, as well as develop evidence-based recommendations for 

improving these outcomes (Kozlowski & Chao, 2012a; 2012b; Kozlowski, 2015). 

 To address this gap, we developed and evaluated a process-oriented theory of knowledge emergence in 

teams. This effort was explicitly organized into four steps for investigating dynamic emergent phenomena (Figure 1). 

In Step 1, we drew from the individual and team cognition literatures to identify foundational concepts and 

mechanisms to construct a process-level architecture of how, when, and why team knowledge arises from the 

activities and interactions of individuals over time (Figure 2). We then translated this narrative theory into a formal 

computational model in Step 2 to provide a precise and transparent account of how these proposed process 

mechanisms unfold over time to generate change in individual and team knowledge outcomes (Table A1). These two 

steps together encompass the development of our process theory. The remaining steps generated insights and 

examined predictions related to team knowledge emergence based on our theory. In Step 3, we instantiated our 

computational model into an ABS and systematically manipulated key behavioral and environmental factors to 

explore their effects on patterns of team knowledge emergence. The results of this virtual experiment provided 

support for the generative sufficiency (Epstein, 1999) of our theoretical specification to produce patterns of 

knowledge emergence consistent with existing research on team cognition. Furthermore, the simulated findings also 

suggested potential leverage points for improving knowledge emergence in human teams. Consequently, we 

evaluated the fidelity of the simulated results and tested these theory-derived prescriptions in Step 4 using real teams 

performing a knowledge-building task. Findings from the empirical study supported the generalization of our theory of 

team knowledge emergence to outcomes observed in human teams, and further demonstrated how targeting the 

learning and sharing processes of individuals contributed to improved team knowledge outcomes.  

Theoretical Implications 

 We believe the proposed theory holds important implications for continued efforts at unpacking the “black 

box” of team cognition as well as more generally advancing the study of dynamic emergent phenomena in the 

organizational sciences. With respect to the former, the primary contribution of the process-oriented theory and 

computational model of team knowledge emergence is that it provides an explicit conceptualization of how, when, 

and why team knowledge manifests. The core concepts and processes summarized in Figure 2 offer an account of 
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team knowledge emergence that is both conceptually plausible and empirically defensible. We demonstrated that this 

process-level explanation was useful for explaining and generating prescriptions relevant to improving team 

knowledge outcomes. The propositions derived in Step 3 and evaluated empirically in Step 4 provide important 

insights into the mechanics of how and why knowledge emergence occurs in teams effectively. One particularly 

significant insight from this work concerns the role of information sharing in team knowledge acquisition. Research 

examining team communication frequently finds that failures to disseminate information to all members are a 

common contributor to poor team performance and decision-making. Such findings are often attributed to biases or 

preferences held by members for wanting to discuss commonly held information (e.g., Lu et al., 2012; Stasser & 

Titus, 1985). However, there is growing evidence that suggests this explanation may only hold for teams under very 

special circumstances (e.g., low expertise differentiation, only in judgment tasks; see Wittenbaum, Hollingshead, & 

Botero, 2004). In teams whose members possessed specialized skill sets and clearly definitive goals—features 

common in many organizational teams with distributed expertise—empirical support for such information sharing 

biases as explanations for inefficiencies in team cognition is lacking. 

 Our theory and results offer an alternative explanation for how deficiencies emerge which can influence a 

team’s capacity to fully externalize knowledge that is not based on implicit biases or member preferences. The 

simulation results showed that how team members communicated during team knowledge-building activities greatly 

influenced the acquisition of knowledge at both the individual and team levels. Table 2 reveals that agent team’s 

communication skills exhibited the most potent impact on the emergence of both internalized and externalized 

knowledge. This suggests that which and how often members share information is as—if not more—critical to the 

development of team knowledge emergence than what information gets shared. Additionally, internalizing specialized 

information held by other team members is time consuming and requires more effort to successfully accomplish. For 

example, the exemplar data from human teams shown in Figure 3 reflected that acquiring the final 40% of the 

knowledge pool through sharing took three to six times longer than acquiring the first 60% of the knowledge pool. 

Notably, this pattern also emerged within the simulated teams even though the difference between encoding and 

decoding rates was very small (one action). Together, these findings suggest that concerted efforts to elaborate 

when, how, and why information is exchanged between members as well as delineate factors that can improve 

decoding/learning-from-others are key considerations for team cognition research.  

 Explanation and extrapolating prescriptions from simulated results are among the most important objectives 

when evaluating the relevance of any process-oriented theory (cf., Davis et al., 2007; Harrison et al., 2007; Kozlowski 
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et al., 2013; Vancouver & Weinhardt, 2012). An additional measure of a theory’s utility is its potential to organize 

previous research and provide guidance for future work. To this end, Figure 6 summarizes a framework for 

advancing research on team cognition that reinforces two important implications made salient by our theory. First, 

efforts to improve team cognition will benefit from examining how individual, team, and environmental factors 

influence and shape the core process mechanisms of team knowledge emergence (input → process). For example, 

meta-analytic evidence suggests that team cognition can be improved through team training (Salas et al., 2008). 

However, it is not clear from this body of research what processes are targeted by team training, how knowledge-

building processes are changed through team training, the degree to which different interventions are effective at 

targeting certain process mechanisms, or how critical individual (e.g., member capabilities, personality), team (e.g., 

goals, leadership), and environmental (e.g., task demands, time pressures) factors interact to impact knowledge 

emergence. Our theory identifies eight core process mechanisms; theory and research examining the relative 

influence of these processes on knowledge emergence (e.g., must teams improve all facets of learning and sharing 

to enhance knowledge acquisition?) as well as understanding the factors that shape and influence these processes 

will facilitate a more complete understanding of how to improve team knowledge outcomes.  

 Second, our theory emphasizes the need to pursue more precise and temporally sensitive measures of 

team cognition that permit its generative dynamics to be examined. Figure 6 summarizes a number of indicators 

potentially useful for capturing individual and team knowledge emergence based on the measures employed in Steps 

3 and 4. Each of these operationalizations has potential to reveal unique insights into team knowledge emergence. 

For example, examining the rates at which knowledge was internalized revealed stark differences in team member’s 

effectiveness at learning-from-self/encoding and learning-from-others/decoding (e.g., Figure 3). In contrast, 

examining changes in the distribution of internalized knowledge across members over time (e.g., Figure 4) revealed 

where chokepoints in knowledge dissemination were not being effectively resolved. Concerted efforts to elaborate 

when, how, and why information is exchanged among team members will benefit from multiple operationalizations of 

collective knowledge. More broadly, team cognition research must begin to employ non-traditional methodological 

techniques and data sources to capture processes and outcomes indicative of team knowledge emergence beyond 

single-time point aggregate measures (Kozlowski & Chao, 2012b). Understanding the temporal dynamics of team 

cognition will require concerted efforts to explore the timing, pacing, and frequency of learning and sharing behaviors 

among team members. Computational modeling offers a powerful approach for simulating observations and 

integrating research; coupling these efforts with new empirical data sources and analytic techniques (e.g., latent 
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semantic analysis of transcribed data, email exchange within project teams, etc.; Cooke, Gorman, & Kiekel, 2008; 

Cooke, Salas, Kiekel, & Bell, 2004) represents a potent combination for unpacking the black box of team cognition. 

Expanding the methodologies and measurement approaches used to study team knowledge-building processes will 

be necessary for advancing theory, research, and practice in this domain. 

 Finally, in addition to implications for the study of team cognition we believe the present work also offers a 

template for researchers to advance theory on emergent phenomena more generally. The majority of theory in the 

organizational sciences lacks adequate specification of the dynamic processes inherent in human cognition, affect, 

and behavior (Cronin et al., 2011; Kozlowski et al., 2013; Lord et al., 2015). The field is ripe for explorations of 

emergence that can be supplemented with empirical research to target the bottom-up mechanisms in individual, 

team, and organizational functioning. Advancing process-oriented theories supplements relational, construct-to-

construct covariance approaches to theory-building with alternative approaches that target the interactive elements of 

systems. The four-step procedure presented in Figure 1 and used to structure the present work offers a replicable 

and accessible meta-approach for integrating narrative theory, computational modeling, simulation, and traditional 

experimentation to investigate any emergent phenomena in the organizational sciences.  

Practical Implications 

 As with the development of any new theory, advancing strong recommendations for practice from the 

present work should be tempered pending further study and validation. Nevertheless, we note two promising 

avenues for enhancing knowledge acquisition within distributed expertise teams. First, the various operationalizations 

of team knowledge emergence described in Step 3 as well as their use for monitoring patterns of knowledge 

emergence of real teams in Step 4 demonstrate the potential diagnostic utility of measuring knowledge-building at the 

process- rather than outcome-level (Kozlowski & Chao, 2012a). For example, an examination of only the individual 

knowledge internalization trajectories observed in the exemplar experimental and control teams (Figures 3A and 3B, 

respectively) did not reveal many noticeable differences in knowledge emergence between these groups. However, 

consideration of the internalization distribution metrics (Figure 4) revealed a number of key differences in how 

collectively held knowledge emerged within these teams. Integrating a task paradigm similar to CRONUS with a 

similar suite of metrics as a training and/or assessment tool could thus prove useful for pinpointing deficiencies in a 

team’s learning and sharing processes. These could then be targeted for improvement through instruction or with the 

development of adaptive feedback tools (cf., Kozlowski, Toney, Mullins, Weissbein, Brown, & Bell, 2001). 
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 Second, results from both the simulated and empirical studies indicate that in teams with a commonly 

shared goal and whose members are specialized, every effort should be made to promote knowledge sharing by all 

individuals as early and often as possible. One method for facilitating this goal is by ensuring that members have the 

proper training and level of expertise to efficiently and effectively complete learning processes (i.e., data selection, 

encoding, integration). In a team knowledge-building context with even a moderate degree of specialization, a single 

member who does not keep pace with the team can slow the dissemination and accumulation of collectively held 

knowledge. A second method involves establishing procedural norms, protocols, and/or reinforcement strategies that 

encourage teams to regularly share learned knowledge. Depending on the nature of task demands and the pace at 

which new information appears and dissipates in the environment, the frequency with which teams may need to 

share information could differ greatly (e.g., emergency medical teams may require many frequent communication 

exchanges, whereas multidisciplinary project teams may require far fewer exchanges). As such, appropriate windows 

in which disseminating knowledge is most beneficial should be established and adhered to. 

Limitations and Future Directions 

 The development of our process-oriented theory of team knowledge emergence was guided by a 

foundational principle of complexity science—efforts to describe emergent dynamics should identify a core set of 

process mechanisms capable of representing the targeted phenomenon (Epstein, 1999; Miller & Page, 2007; 

Reynolds, 1987). This tenet places parsimony as the most critical goal for a theory of emergence. The theoretical 

model summarized in Figure 2 and investigated in Steps 3 and 4 almost certainly falls short in capturing all the 

possible influences related to team knowledge emergence. However, the goal was to elaborate a small number of 

core concepts and processes that constitute team knowledge emergence, and then evaluate their sufficiency to 

replicate patterns of knowledge development in teams with distributed expertise. Consequently, we view our theory of 

team knowledge emergence as “lean” and a point of departure for future research to continue unpacking the 

dynamics of team cognition rather than a definitive declaration of knowledge production in teams. One of the major 

advantages of specifying a theory of emergence into a computational model is that it necessitates transparency 

among one’s theoretical assumptions. With respect to the present research, this means all the model specifications 

summarized in Tables A1 and A2 in Appendix A characterize limitations and boundary conditions of our theory—and 

therefore opportunities for extending its precision and generalizability. 

 We identify two directions that are particularly fruitful for future research. First, our model and simulations 

required team members to be temporally synched in their learning and sharing activities; that is, every agent 
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transitioned into and out of learning and sharing phases together. However, the behavioral patterns of teams 

observed in Step 4 suggest this sequence does not always reflect the pacing of activity in real teams. It was not 

uncommon to observe instances in which one team member was engaged in learning processes (e.g., searching the 

specialist map, posting to the specialist map, etc.) while another performed sharing process (e.g., posting to the 

mission map, monitoring the mission map for new posts). Despite these differences, the qualitative comparisons in 

Figures 3 and 4 demonstrate that the trajectories of team knowledge emergence observed in simulated and human 

teams were quite similar. This suggests that temporal synchronicity among learning and sharing activities may be 

only one path towards achieving knowledge externalization and that integrating other mechanisms (e.g., adaptability, 

monitoring, etc.) could represent a useful theoretical extension. 

 An additional extension of the theory would be to consider more flexible end states with respect to team 

knowledge emergence. Hinsz et al. (1997) posit that groups possess processing objectives that define the goals, 

purpose, and frame of reference for how teams engage in cognitive tasks. The processing objective of teams in the 

ABS and CRONUS was that every member sought to internalize and externalize all available information in the 

environment. Although this objective is a feature of many distributed expertise teams engaged in knowledge-building 

(Fiore et al., 2010), there are contexts in which full knowledge externalization among members may be unnecessary 

or unproductive. For example, some types of teams exhibit better performance when they possess strong transactive 

memory systems (i.e., low overlap in internalized knowledge between members coupled with shared awareness of 

who knows what) as opposed to commonly shared team knowledge structures (i.e., high overlap in internalized and 

externalized knowledge; DeChurch and Mesmer-Magnus, 2010). Compilational team knowledge may therefore 

represent a more effective processing objective in certain contexts. Such extensions could be incorporated into our 

theory by specifying alternative process mechanisms (e.g., filtering data, knowing who to communicate with, etc.) that 

facilitate the development of both distributed transactive memory systems and shared mental models. 

Conclusion 

 The study of team cognition—and many other similarly emergent phenomena in the organizational 

sciences—have frequently relied on post hoc examinations of cross-sectional, static data gathered after emergence 

has already happened (Cronin et al., 2011; Kozlowski et al., 2013; Lord et al., 2015). Unfortunately, this has limited 

the ability to draw inferences about the dynamic processes that unfold within and between individuals to generate 

and sustain team knowledge. The present research offers one of the first efforts in the organizational sciences to pair 

a theoretical model with empirical data to capture a commonly cited but rarely observed tenet of multilevel theory: 
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changes in team-level outcomes result from changes in individual-level processes. One of the most useful and 

promising directions for theories of emergence is the opportunity to explore how and why organizationally relevant 

outcomes emerge rather than focus only on differences in what has already emerged. Such insights enable both 

researchers and practitioners to achieve a clearer understanding of why particular outcomes tend to occur and where 

interventions could be directed to facilitate or correct them. We hope that the conceptual and methodological 

approach exemplified in the present paper can serve as a model for advancing the study of both team cognition and 

dynamic team phenomena in general. 
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Footnotes 

 1 This specification is equivalent to assuming that all actions performed by agents take the same amount of 

time as measured in seconds, minutes, etc. 

 2 The full code for running the agent-based simulation is included in the supplementary material for this 

article. 

 3 Note that the information processing skill of each agent in each team was determined by randomly 

sampling an integer from an interval consistent with the information processing skill conditions. All agents on a given 

team thus tended to have similar but not identical encoding/decoding rates, and thus it was possible to manipulate 

the relative speaking rates of agents within each team in accordance with this manipulation. For example, a team in 

the low information processing skill condition might be generated such that agent one’s encoding rate = 9, agent 

two’s encoding rate = 10, and agent three’s encoding rate = 10. If this team were the in communication skill condition 

in which the lowest skilled agent spoke most frequently, agent one would be given the highest probability of speaking 

(50%) followed by agents two and three (both 25%). If this team were in the communication skill condition in which 

the highest skilled agent spoke most frequently, either agent two or agent three would be selected to have the 

highest probability of speaking. 

 4 A primary analytic goal of this experiment was to evaluate the internal coherence and logical consistency 

of the ABS instantiating our theory of team knowledge emergence. Doing so involves assessing the degree to which 

manipulating theoretically meaningful parameters produces changes in model outcomes that are interpretable and 

consistent with conceptual rationale (Taber & Timpone, 1996; Epstein, 1999). As such, although the statistical 

models included all possible two- and three-way interaction effects, only the main effects for the experimental 

manipulations are evaluated and reported. These results provide the most straightforward interpretation of how 

changes in individual-level learning and sharing behaviors contribute to team knowledge emergence. 

 5 This result was likely an artifact of the internalization process and stopping protocol used in the ABS. Since 

all teams were comprised of members with fairly homogenous encoding rates (e.g., agents on high ability teams 

required 3, 4, or 5 actions to encode data), there was relatively little variability among knowledge acquisition 

trajectories within teams. Nevertheless, because the simulations ran until all agents internalized the entire knowledge 

pool and higher ability agents could acquire more knowledge during each phase, idiosyncratic patterns of 

communication during sharing phases meant that high ability agents reached maximum internalization much more 

quickly than their teammates in some cases. Because an agent’s knowledge acquisition trajectory stopped growing 
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once it had learned all possible knowledge, this had the potential to result in slightly larger variability in internalization 

rates in higher compared to lower ability teams. 

 6 It should be noted that modeling changes in the information processing and communication skills of agents 

over time was not examined in the virtual experiments nor is this mechanism incorporated into our theory of team 

knowledge emergence. If such expertise development were of conceptual interest, the computational model 

summarized in Table A1 could be adapted to include feedback mechanisms that change specific parameters or 

mechanisms (e.g., encoding, decoding, integration, speaking, etc.) in response to exogenous or endogenous factors 

(e.g., experience, training, accumulated task knowledge, etc.). However, identifying the factors that influence learning 

and sharing processes or how those process mechanisms change over time is beyond the scope of our theory and 

does not directly contribute to advancing a general process-oriented account of team knowledge emergence. 

 7 Degree of specialization within the team’s task environment was not manipulated in the experiment with 

human teams. As described previously, this structural characteristic was not expected to directly impact how 

members carried out the core learning and sharing process mechanisms of team knowledge emergence. Although 

the simulation results demonstrate that this factor has an influence on team knowledge outcomes, the effect occurs 

because it requires team members to rely more heavily on one another for information and therefore places greater 

emphasis on the relatively more demanding knowledge sharing processes. The actual learning and sharing 

processes enacted by team members did not differ under differing degrees of specialization and thus was held 

constant in the empirical experiments. 

 8 This mechanism is intended to emulate the process of information exchange that occurs in a face-to-face 

context. To learn information communicated that is communicated by another team member, the individual receiving 

information must direct their attention to the message that is being conveyed to them. Failure to do so results in the 

information sharing attempt going unnoticed, and it must be communicated again to be acknowledged. 

 9 In addition to the CG for learning and sharing, CG describing how to make accurate route and asset 

decisions were also administered to some teams in both the control and experimental conditions. These prompts only 

provided guidance on how to combine acquired information to make task decisions. Subsequent analyses (available 

from the first author upon request) show that the decision-focused CG had no significant influence on 

learning/sharing behaviors or outcomes (i.e., amount of information internalized, externalized, etc.). Consequently, 

we do not discuss the role or design of the embedded decision CG further. 
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 10 The purpose of the fidelity comparison was to examine whether the patterns of knowledge emergence 

produced by an agent team following the process rules in our simulation were consistent with the patterns of 

knowledge emergence observed in human teams. It was only necessary to simulate a single agent team to 

accomplish this goal; because all agents enacted the same learning and sharing processes (i.e., Table A1 in 

Appendix A), the same global trends with respect to how knowledge accumulates over time will always be the same 

regardless of the model parameters selected. Although there will be idiosyncrasies in the specific trajectories of 

knowledge acquisition for any one simulated agent/team under a given parameterization, such differences are not 

substantively meaningful. Consequently, it was unnecessary to simulate and then average across many teams under 

the same parameterization for purposes of the fidelity comparisons. 

 11 Because the units of time differed between the simulated (number of learning and sharing phases) and 

participant (elapsed seconds) teams, the time scale for the simulated data was transformed to facilitate comparisons 

with the observed data. This conversion was performed by dividing the total amount of time participant teams were 

given to engage in knowledge-building during a trial (360 seconds) by the total number of phases observed for the 

selected simulated team to fully externalize the entire knowledge pool (40 phases). This resulted in equating all 

learning and sharing phases for the simulated team as lasting approximately 9 real-time seconds in Figures 3 and 4. 

This conversion is not intended to imply a “true” duration for the learning and sharing phases represented in our ABS. 

The time scale transformation simply provides a convenient method for comparing the overall patterns of team 

knowledge emergence implied by our theory and reflected in the simulated and participant team data. 

 12 Although the simulated team appears to take much longer to achieve complete team knowledge coverage 

compared to the participant teams, this delay is an artifact of the time scale transformation described in Footnote 10. 

Just like the real human teams, simulated teams were initially acquiring knowledge primarily during learning phases 

of activity. However, the ABS forced agents to perform at least one sharing phase after completing a learning phase, 

even if there was no new knowledge to share (see Table A1, Appendix A). Because any and all simulated phases—

even a sharing phase with just one iteration and no knowledge exchange—were treated as 9 seconds in length in 

Figures 3 and 4, this had the effect of artificially inflating the apparent number of seconds before simulated agents 

reached complete team knowledge coverage. Although this does not affect interpretations of the overall 

patterns/trajectories of team knowledge emergence in the simulated data, it cautions against drawing conclusions 

about the implied time scale of knowledge emergence expressed in the ABS. 

 
  



Team Knowledge Emergence      54 

Table 1 
Coefficient estimates from MRCM analyses for individual internalization rates by agents 
(Step 3) 

Variables b Std. Error 95% CI 

DV: Number of time steps required by individual 
agents to internalize all knowledge 

  
 

Intercept 32.47** .11 [32.25, 32.69] 
Low information processing skill 7.98** .15 [7.69, 8.27] 
Moderate information processing skill 16.38** .15 [16.09, 16.67] 
Equal speaking rate -8.29** .18 [-8.64, -7.94] 
Most skilled agent speaks most .48** .05 [.38, .57] 
50% unique information 3.83** .15 [3.54, 4.12] 
66% unique information 16.42** .15 [16.13, 16.71] 

** p < .001 
Note. Parameter estimates are from the full two-level MRCM model including all two- and 
three-way interactions (interaction effects not reported, see Appendix B). All predictor 
variables were dummy coded Level-2 categorical variables:  
Low information processing skill (0 = high skilled team, 1 = low skilled team) 
Moderate information processing skill (0 = high skilled team, 1 = moderate skilled team) 
Equal speaking rate (0 = lowest skilled agent speaks most, 1 = all agents speak equally) 
Most skilled agent speaks most (0 = lowest skilled agent speaks most, 1 = most skilled 
agent speaks most) 
50% unique information (0 = 33% unique information, 1 = 50% unique information) 
66% unique information (0 = 33% unique information, 1 = 66% unique information) 
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Table 2. 
Summary of estimated marginal means, ANOVA tests, and effect sizes for information processing skills, 
communication skills, and degree of specialization on simulated team knowledge outcomes (Step 3) 

Independent Variable 
Team 

Internalization 
Variability 

Team 
Knowledge 
Coverage 

Internalization 
Distribution 

Externalization 
Distribution 

Information processing skills     
     Low skill 0.000158a 15.843a 47.141a 47.525a 
     Moderate skill 0.000189b 13.254b 41.625b 41.748b 
     High skill 0.000255c 11.036c 36.539c 36.670c 
     
     Sig. level for ANOVA p < .001 p < .001 p < .001 p < .001 
     Effect size (partial η2) .072 .654 .887 .885 

Communication skills     
     Least skilled speaks most 0.000188d 13.374d 45.180d 45.320d 
     All speak equally 0.000234f 13.378d 34.711e 34.824e 
     Most skilled speaks most 0.000179d 13.381d 45.414f 45.525f 
     
     Sig. level for ANOVA p < .001 p = .994 p < .001 p < .001 
     Effect size (partial η2) .026 .000 .912 .991 

Degree of Specialization     
     33% unique/67% common 0.000121g 9.699g 37.481g 37.615g 
     50% unique/50% common 0.000213h 12.900h 38.926h 39.051h 
     66% unique/33% common 0.000267i 17.533i 48.898i 49.004i 
     
     Sig. level for ANOVA p < .001 p < .001 p < .001 p < .001 
     Effect size (partial η2) .143 .832 .914 .913 

Note. Within a column, means with identical subscripts do not significantly differ (Tukey HSD test p > 0.05). 
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Table 3 
Operationalization of core concepts & mechanisms from theory of team knowledge emergence in virtual (Step 3) 
and empirical (Step 4) experiments 

Core Concepts & 
Mechanisms 

Description 
Representation in ABS 

(Step 3) 
Representation in CRONUS 

(Step 4) 

Data Selection Identifying data to be learned 
from the task environment 

Agents select an accessible 
piece of data to learn from 
knowledge pool or attend to 
data shared by another agent  

Members search Specialist Map 
or Mission Map for obstacles to 
learn 

Encoding Transforming data observed 
from the environment into 
internalized data (“learning-
from-self”) 

Agents spend some number of 
actions to internalize a selected 
piece of data  

Members post an obstacle 
identified from Specialist Map to 
the Specialist Map 

Decoding Transforming knowledge 
received from other team 
members into internalized 
knowledge (“learning-from-
others”) 

Agents spend some number of 
actions to internalize a piece of 
communicated knowledge 

Members post an obstacle 
identified from Mission Map to 
Specialist Map 

Integration Transforming internalized data 
into relationally organized 
internalized knowledge 

Agents spend some number of 
actions to learn an association 
between two pieces of 
internalized data 

(Not examined in current study) 

Member Selection Choosing to speak to other 
members in the team 

Agents probabilistically selected 
to speak 

Members visit Mission Map to 
communicate information 

Retrieval Identifying internalized 
knowledge from memory to be 
shared 

Agents choose one piece of 
non-externalized knowledge 
from knowledge they have 
internalized 

Members choose an obstacle 
posted on Specialist Map to 
share with team members 

Sharing Communicating of internalized 
knowledge to other team 
members  

Agents communicate a piece of 
knowledge to all other agents 
on the team 

Members post an obstacle to 
Mission Map 

Acknowledgement Generating externalized 
knowledge by confirming 
knowledge shared by another 
team member is internalized 

Agents repeat a piece of 
communicated knowledge once 
it has been internalized 

Members post a shared 
obstacle to Specialist Map to 
make obstacle permanently 
visible on Mission Map 

Note. ABS = agent-based simulation; CRONUS = Crisis Relief Operation: Naval Unit Simulation.  
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Table 4. 
List, description, and rationale for the embedded contextualized guidance (CG) prompts provided to experimental condition teams in Step 4 

Focal Target CG Name Description Rationale 

Information 
Processing 

Skills 

Avoid 
Distractors 

Triggered when a member posted non-mission relevant obstacle to the SM. 
Advised to delete the post and not post this obstacle type in the future. 

Improve data selection and encoding by focusing members 
only on task-relevant information 

Repeat 
Common 
Obstacle 

Triggered when a member posted a common obstacle to the MM. Advised to 
delete the post and not post this obstacle type to the MM in the future. 

Improve data selection and decoding by reducing ambiguity 
over presence of information 

Incomplete 
Specialist 

Map 

Triggered when a member posted an obstacle to the MM before learning all 
available obstacles on the SM. Advised to search SM further before posting 
additional obstacles to MM. 

Improve encoding and decoding by focusing members on 
the quicker learning-from-self process first and ensuring no 
unique information is forgotten 

Incorrect 
Post 

Triggered when a member posted an obstacle to the SM that did not exist. 
Advised to delete the post and confirm identity of the obstacle being posted. 

Improve data selection and encoding by removing incorrect 
information 

Communication 
Skills 

Share Too 
Quickly 

Triggered when a member posted an obstacle to the MM before all other 
members had learned every obstacle on their SMs. Advised to use the in-game 
chat box to notify teammates when ready to share and receive information. 

Improve member selection and sharing by reducing 
number of communication attempts missed by teammates 

Accidental 
Mission 

Map Post 

Triggered when a member posted a unique obstacle not within his/her domain of 
expertise to the MM that was likely meant to be posted to the SM instead. 
Advised to undo the post from the Mission Map and post to the SM. 

Improve decoding and acknowledgement by reducing 
number of incorrect communication attempts and improving 
learning-from-others 

Missed 
Post: 

Receiver 

Triggered when a member missed an obstacle post shared by a team member on 
the MM. Advised to monitor communication notification that indicate obstacle 
information has been shared by a team member. 

Improve data selection and sharing by reducing number of 
communication attempts missed by teammates 

Missed 
Post: 

Sender 

Triggered when a post shared by the team member on the MM was missed by 
another team member. Advised to re-post the missed obstacle on MM. 

Improve sharing by reducing number of communication 
attempts missed by teammates 

Sharing 
Strategy 

Triggered when a member posted an obstacle to the MM out of order. Advised all 
members to follow a prescribed strategy for posting obstacles to the MM. 

Improve member selection and sharing by developing a 
common strategy for communicating information 

Learning 
Strategy 

Triggered when a member posted new obstacles to the MM before posting 
obstacles shared with him/her on the MM to the SM. Advised all members to 
follow a prescribed strategy for transferring obstacles from the MM to the SM. 

Improve decoding and sharing by developing a common 
strategy for acquiring shared information 

Note. SM = Specialist Map; MM = Mission Map. All CG prompts were delivered through a pop-up window that appeared on screen of the member(s) who triggered 
the CG. Members were required to click an “OK” button to remove the window and continue with the task. 
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Table 5 
Coefficient estimates from MRCM analyses for amount of fully 
externalized knowledge acquired by teams across trials (Step 4) 

Variables b Std. Error 95% CI 

DV: Number of fully externalized 
obstacles at end of trial 

   

Intercept 1.93** .23 [1.48, 2.38] 
Trial 1.10** .10 [.90, 1.29] 
Trial^2 -.07** .01 [-.08, -.05] 
Condition .34 .33 [-.31, .99] 
Trial x Condition -.32* .14 [-.60, -.03] 
Trial^2 x Condition .05** .01 [.02, .07] 

* p < .05, ** p < .001 
Note. Condition is a dummy coded variable (0 = control; experimental 
= 1). Trial variable was coded such that 0 = first trial. All coefficients 
are reported in original (unstandardized) units. 
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Figure 1. General framework for developing and evaluating theories of emergence. 

 

 
 
Note. CM = computational model; ABS = agent-based simulation. Descriptions in the light gray boxes summarize the tasks 
carried out for each step in the present research.
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Figure 2. Process-oriented theory of knowledge emergence in teams. 
 

 
 
Note. Solid arrows signify pathways engaged during learning processes, while dotted arrows signify pathways engaged during sharing processes. The boxes labeled Information 
Processing and Communication highlight the core process mechanisms targeted by the manipulations in the virtual (Step 3) and empirical (Step 4) experiments. The diagram labeled 
Emergent Team Knowledge exemplifies how team knowledge outcomes were operationalized in the simulated and empirical data as the distribution of internalized and externalized 
knowledge across members in a team. Members in this diagram are represented by the letters A, B, C. Each “wedge” of the knowledge pool represents a distinct piece of information 
that could be learned. Letters within a wedge indicate members who have internalized a piece of information. Letters separated by an arc within each wedge indicate members who do 
not yet share externalized knowledge about that piece of information; letters not separated by an arc within each wedge indicate members who share externalized knowledge about a 
piece of information. For example, the wedge labeled Internalized: Full Overlap shows that all three members of the team have internalized this same piece of information, but no one 
has acknowledged this information with other team members (i.e., no externalization). In contrast, the wedge labeled Externalized: Partial Overlap shows that all three members have 
internalized this information, but members B and C have also acknowledged and externalized this information.
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Figure 3. Comparison of individual knowledge internalization for a single trial between (A) a simulated team and a 
representative experimental condition team and (B) a representative control condition team (Step 4).  
 

A 

 

B 

 
 
Note. The same simulated team is shown in both panels. Agents in the simulated team had heterogeneous information 
processing skills, equal speaking rates, and operated in an environment with high specialization (75% unique information). Data 
from the control and experimental teams were from Trial 10. 
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Figure 4. Comparison of changes in internalization distribution for (A) non-overlapping, (B) partially overlapping, and 
(C) fully overlapping knowledge for simulated, experimental, and control condition teams for a single trial (Step 4). 
 

A 

 

B 

 

C 

 
 
Note. Agents in the simulated team had heterogeneous information processing skills, equal speaking rates, and operated in an 
environment with high specialization (75% unique information). Data from the control and experimental teams were from Trial 10.
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Figure 5. Observed and regression estimated number of fully externalized obstacles by teams each trial in the control and experimental conditions (Step 4). 
 

 
Note. * p < .05 for difference in observed means between experimental and control condition. CG = contextualized guidance. Error bars show 95% confidence interval of observed 
means. The CG was present only in the experimental condition and was introduced at start of Trial 3 and removed at start of Trial 10.
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Figure 6. Integrative framework for advancing research on team cognition and knowledge emergence. 
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APPENDIX A 

 Table A1 outlines the procedural algorithm of the computational model used to formally specify our process-

oriented theory of knowledge emergence in teams. These rules were also enacted by agents in the ABSs used 

during the virtual experiment conducted in Step 3 of the paper. 

 Table A2 summarizes the list of assumptions and specifications instantiated in the ABSs reported in Step 3 

of the paper. When translating a theory into a computational representation and operationalizing it into a dynamic 

simulation, researchers must make a number of assumptions about the nature, sequence, and boundary conditions 

implied by the proposed theoretical processes (cf., Epstein, 1999). Some assumptions are more operational in nature 

and are dictated by the demands of programming a dynamic process into computer language (i.e., How/when does 

the amount of knowledge an agent possesses increment? How is “memory” quantitatively represented?). However, 

many assumptions are conceptual in nature and may carry implications for the nature of the theoretical process at 

hand (i.e., Do agents act simultaneously or sequentially? Do agent parameters change or remain constant 

throughout a simulation?). Regardless of their nature, making such assumptions transparent is critical to 

understanding and interpreting a computational model and accompanying simulations.
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Table A1. 
Computational model of team knowledge emergence 

Learning Process 

1. Set timer for Learning phase to 0 
2. Select piece of data to learn from knowledge pool that is accessible 

a. If no accessible data partially or completely encoded, randomly select new data to encode, go to 
Step 3 

b. If any accessible data partially encoded, select that data, go to Step 3 
c. If any accessible data completely encoded, go to Step 4 

3. Encode selected data at encoding rate 
a. If data encoding not completed, go to Step 7 
b. If data encoding completed, go to Step 5 

4. Identify whether any internalized data can be integrated 
a. If no integration can occur, go to Step 2a or 2b 
b. If integration can occur, encode link between data pieces, go to Step 6 

5. Increment amount of internalized data by 1, go to Step 7 
6. Increment amount of internalized knowledge by 1, go to Step 7 
7. Increment timer for learning phase by 1 

a. If learning phase timer < length of learning phase, return to Step 2 
b. If learning phase timer = length of learning phase, go to Step 8 

Sharing Process 

8. Set timer for Sharing phase to 0 
9. Select one agent to speak according to speaking rate 
10. Determine whether selected agent has any internalized knowledge to share that is not yet fully 

externalized 
a. If no new knowledge to share, go to Step 15 
b. If new knowledge to share, go to Step 11 

11. Speaking agent retrieves random piece of internalized knowledge and shares with other agents 
12. Receiving agents decode shared knowledge at decoding rate 

a. If shared knowledge not fully decoded by receiving agent, agent goes to Step 15 
b. If shared knowledge fully decoded by receiving agent, agent increments internalized knowledge 

by 1, goes to Step 13 
13. Receiving agent(s) acknowledge newly internalized knowledge by repeating it to other agents 

a. If any other agents have not yet internalized this knowledge, those agents repeat Step 12 
b. If knowledge is acknowledged by all agents, go to Step 14 

14. Increment amount of externalized knowledge by 1 
15. Increment timer for sharing phase by 1 

a. If sharing phase timer < length of sharing phase, return to Step 9 
b. If sharing phase timer = length of sharing phase or no new information to share, go to Step 16 

Team Knowledge-building Cycle 

16. Determine whether all agents have internalized entire knowledge pool 
a. If entire knowledge pool not internalized, go to Step 1 
b. If entire knowledge pool internalized, go to Step 17 

17. Determine whether all agents have externalized entire knowledge pool 
a. If entire knowledge pool not externalized, go to Step 8 
b. If entire knowledge pool externalized, end simulation 

Note. The length of both the learning and sharing phase timers was set to 50 time steps. All steps of the pseudo-
code were evaluated individually by each agent, but all agents proceeded through each phase synchronously (i.e., 
the next time increment within a phase did not begin until all agents reached the final step of the phase). 
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Table A2. 
Specifications and assumptions for agent-based simulation of team knowledge emergence 

1. Time is equated with agent actions such that each agent only performs one action per time step. 
Consequently, all possible actions an agent can take during a single time step (e.g., encoding attempt, 
decoding attempt, sharing attempt) take the same amount of time. 

2. All teams initially begin in a learning phase in which agents are assumed to be complete novices who know 
none of the information in the knowledge pool. 

3. Agents fully encode a single piece of data during learning before selecting another piece of data to learn. 
Thus, agents “remember” what they have started encoding and always opt to finish learning partially encoded 
data. 

4. Encoding and decoding is operationalized as the number of time steps needed for an agent to fully internalize 
a piece of data.  

5. Decoding rates are slower than encoding rates. 

6. Creating internalized knowledge requires agents to integrate two pieces of internalized data that share an a 
priori association. Once agents internalize both pieces of data, they integrate the data into internalized 
knowledge. 

7. Integration rates are the same for all agents. All agents require only one time step to completely integrate two 
pieces of internalized data into a piece of internalized knowledge. 

8. Member selection (i.e., speaking rate) is operationalized as the probability a given member will be selected to 
speak in the team. Member selection at each time step is an independent random sampling process and is 
not influenced by any previous events (e.g., speaking in a previous turn, learning new information, etc.). 

9. Each agent’s speaking, encoding, decoding, and integration rates remain constant throughout an entire 
simulation. Agents did not improve (or become worse) at performing certain actions over time. 

10. When an agent shares a piece of knowledge, it is simultaneously communicated to and received by all other 
agents. 

11. Agents know which pieces of knowledge have been externalized/acknowledged by other agents, but they do 
not know which pieces of knowledge have been internalized by other agents. 

12. Agents only share internalized, integrated knowledge that has not yet been fully externalized by all other 
agents. 

13. Agents always acknowledge a piece of internalized knowledge after it is fully decoded. 

14. When a piece of knowledge is repeated during acknowledgement, it is considered a normal sharing attempt 
by any agents that have not yet internalized that knowledge and prompts an additional decoding attempt for 
those agents. 

15. If all agents have internalized but not yet externalized the entire knowledge pool, agents no longer enter 
learning phases and will continually cycle through sharing phases until all knowledge is fully externalized by 
all agents. 

16. Agents act with perfect memory and without bias; that is, agents never forget something they have 
internalized. 
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APPENDIX B 

 
MRCM Analyses for Step 3 

 The purpose of the MRCM analyses in Step 3 was to evaluate the overall main effects of agent ability level, 

agent speaking rate, and the distribution of information in the task environment on knowledge internalization rates 

observed at the individual-/agent-level. A 2-level (Level-1 = individual, Level 2 = team) MRCM was thus used to 

account for the fact that individual agents were nested within teams: 

Level 1:  Ind.Intij = β0j +rij (1) 

Level 2:  β0j = γ00 + γ01(Low.Abilityj) + γ02(Mod.Abilityj) + γ03(Equal.SpkRatej) + γ04(High.SpkRatej) + γ05(Mod.InfoDistj) + 

γ06(High.InfoDistj) + γ07(Low.Abilityj*Equal.SpkRatej) + γ08(Mod.Abilityj*Equal.SpkRatej) + 

γ09(Low.Abilityj*High.SpkRatej) + γ10(Mod.Abilityj*High.SpkRatej) +  

γ11(Low.Abilityj*Mod.InfoDistj) + γ12(Mod.Abilityj*Mod.InfoDistj) +  

γ13(Low.Abilityj*High.InfoDistj) + γ14(Mod.Abilityj*High.InfoDistj) +  

γ15(Equal.SpkRatej*Mod.InfoDistj) + γ16(Equal.SpkRatej*High.InfoDistj) + 

γ17(High.SpkRatej*Mod.InfoDistj) + γ18(High.SpkRatej*High.InfoDistj) + 

γ19(Low.Abilityj*Equal.SpkRatej*Mod.InfoDistj) +  

γ20(Mod.Abilityj*Equal.SpkRatej*Mod.InfoDistj) + γ21(Low.Abilityj*High.SpkRatej*Mod.InfoDistj) +  

γ22(Mod.Abilityj*High.SpkRatej*Mod.InfoDistj) + γ23(Low.Abilityj*Equal.SpkRatej*High.InfoDistj) +  

γ24(Mod.Abilityj*Equal.SpkRatej*High.InfoDistj) + γ25(Low.Abilityj*High.SpkRatej*High.InfoDistj) +  

γ26(Mod.Abilityj*High.SpkRatej*High.InfoDistj) + u0j ,   

where Ind.Intij indicates the individual internalization rate for agent i on team j, Low.Abilityj and Mod.Abilityj are 

dummy-coded condition variables indicating teams of all low-ability agents or moderate-ability agents (respectively), 

Equal.SpkRatej and High.SpkRatej are dummy-coded condition variables indicating teams in which the speaking 

rates for agents were equal or biased towards the highest ability agent (respectively), and Mod.InfoDistj and 

High.InfoDistj are dummy-coded condition variables indicating teams in which 50% or 66% of the knowledge pool 

was composed of unique information (respectively). 
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 It should be noted that although the fully-crossed factorial design employed in the Step 3 simulations 

permitted analysis of all two- and three-way interactions among the ability level, speaking rate, and information 

distribution manipulations from our results, only the main effect findings for these variables were relevant to the 

conceptual argument advanced in our paper. Accordingly, the MRCM (Table 1) and ANOVA (Table 2) results 

discussed in the Results section of the paper do not present or describe any interaction results from these analyses. 

The rationale behind this decision was twofold. First, the primary purpose of Step 3 was to evaluate the generative 

sufficiency of our computational model; that is, the goal of virtual experimentation was to establish that changes in 

key exogenous variables in our model (i.e., encoding/decoding rates, speaking rates, information distribution) were 

capable of producing coherent and tractable patterns of change in the key outcome variables of interest. Establishing 

the validity of these core process mechanisms is a necessary precondition to exploring more nuanced and subtle 

patterns of interactions among exogenous variables (cf., Taber & Timpone, 1996). Thus, a thorough and systematic 

review of the main effect findings was of greatest significance. 

 Second, a related goal of Step 3 was to provide insight into points of leverage that could be manipulated in 

real teams to enhance team knowledge emergence. In this respect, interpretation of the interaction effects was less 

useful for identifying interventions that could be empirically tested in human teams. The design of our contextualized 

guidance interventions in Step 4 targeted behavioral analogues of the processes specified in our computational 

theory and carried out by agents in our ABS (see Table 4 in paper). Consequently, our interest in Step 4 was to 

implement interventions based on the main effect findings from Step 3 to evaluate whether teams that improved the 

core mechanisms specified in our theory resulted in better team knowledge outcomes. Notably, the objective was not 

to evaluate how specific processes/interventions affect knowledge emergence in conjunction with or in comparison to 

one another. The goal was to assess whether those interventions were effective at making human teams more like 

the “best” agent teams observed in the ABSs. 

MRCM Analyses for Step 4 

 The purpose of the MRCM analyses in Step 4 was to evaluate changes in knowledge externalization across 

trials for human participant teams. The rationale for these analyses is that if teams in the experimental condition 

improved their learning and sharing processes as a result of the CG intervention, this should manifest as 
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improvements in the number of obstacles fully externalized by teams each trial. A 2-level (Level-1 = time, Level 2 = 

team) MRCM was thus used to account for the fact that trial was nested within teams: 

Level 1:  Ext.Knowtj = β0j + β1j(Trialtj)+ β2j(Trial2tj) +rtj (2) 

Level 2:  β0j = γ00 + γ01(Conditionj) + u0j 

β1j = γ10 + γ11(Conditionj) + u1j 

β2j = γ20 + γ21(Conditionj) + u2j , 

where Ext.Knowti indicates the number of obstacles fully externalized on trial t by team j, Trialtj reflects the trial 

number (Trial 1 = 0), Trial2tj reflects the quadratic trial number, and Conditionj is a dummy-coded condition variable 

indicating whether a team was in the control (Condition = 0) or experimental (Condition = 1) condition. 


